merlin.models.tf.AverageEmbeddingsByWeightFeature#
- class merlin.models.tf.AverageEmbeddingsByWeightFeature(*args, **kwargs)[source]#
Bases:
keras.engine.base_layer.Layer
- __init__(weight_feature_name: str, axis=1, **kwargs)[source]#
Computes the weighted average of a Tensor based on one of the input features. Typically used as a combiner for EmbeddingTable for aggregating sequential embedding features
Methods
__init__
(weight_feature_name[, axis])Computes the weighted average of a Tensor based on one of the input features.
add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, ...])Adds a new variable to the layer.
build
(input_shape)Creates the variables of the layer (for subclass implementers).
build_from_config
(config)call
(inputs, features)compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_output_shape
(input_shape)compute_output_signature
(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params
()Count the total number of scalars composing the weights.
finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config)Creates a layer from its config.
from_schema_convention
(schema[, ...])Infers the weight features corresponding to sequential embedding features based on the feature name suffix.
get_build_config
()get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_weights
()Returns the current weights of the layer, as NumPy arrays.
set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizer
Optional regularizer function for the output of this layer.
compute_dtype
The dtype of the layer's computations.
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable
trainable_variables
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.
- static from_schema_convention(schema: merlin.schema.schema.Schema, weight_features_name_suffix: str = '_weight')[source]#
Infers the weight features corresponding to sequential embedding features based on the feature name suffix. For example, if a sequential categorical feature is called item_id_seq, if there is another feature in the schema called item_id_seq_weight, then it will be used for weighted average. If a weight feature cannot be found for a given seq cat. feature then standard mean is used as combiner
- Parameters
schema (Schema) – The feature schema
weight_features_name_suffix (str) – Suffix to look for a corresponding weight feature
- Returns
A dict where the key is the sequential categorical feature name and the value is an instance of WeightedAverageByFeature with the corresponding weight feature name
- Return type
Dict[str, WeightedAverageByFeature]