merlin.models.tf.InputBlockV2#
- merlin.models.tf.InputBlockV2(schema: typing.Optional[merlin.schema.schema.Schema] = None, categorical: typing.Union[merlin.schema.tags.Tags, keras.engine.base_layer.Layer] = Tags.CATEGORICAL, continuous: typing.Union[merlin.schema.tags.Tags, keras.engine.base_layer.Layer] = Tags.CONTINUOUS, pretrained_embeddings: typing.Union[merlin.schema.tags.Tags, keras.engine.base_layer.Layer] = Tags.EMBEDDING, pre: typing.Optional[typing.Union[merlin.models.tf.core.base.Block, str, typing.Sequence[str]]] = None, post: typing.Optional[typing.Union[merlin.models.tf.core.base.Block, str, typing.Sequence[str]]] = None, aggregation: typing.Optional[typing.Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = 'concat', tag_to_block={<Tags.CONTINUOUS: 'continuous'>: <class 'merlin.models.tf.inputs.continuous.Continuous'>, <Tags.CATEGORICAL: 'categorical'>: <function Embeddings>, <Tags.EMBEDDING: 'embedding'>: <function PretrainedEmbeddings>}, **branches) merlin.models.tf.core.combinators.ParallelBlock [source]#
The entry block of the model to process input features from a schema.
This is a new version of InputBlock, which is more flexible for accepting the external definition of embeddings block. After 22.10 this will become the default.
- Simple Usage::
inputs = InputBlockV2(schema)
- Custom Embeddings::
- inputs = InputBlockV2(
schema, categorical=Embeddings(schema, dim=32)
)
- Sparse outputs for one-hot::
- inputs = InputBlockV2(
schema, categorical=CategoryEncoding(schema, sparse=True), post=ToSparse()
)
- Add continuous projection::
- inputs = InputBlockV2(
schema, continuous=ContinuousProjection(continuous_schema, MLPBlock([32])),
)
- Merge 2D and 3D (for session-based)::
- inputs = InputBlockV2(
schema, post=BroadcastToSequence(context_schema, sequence_schema)
)
- Parameters
schema (Schema) – Schema of the input data. This Schema object will be automatically generated using [NVTabular](https://nvidia-merlin.github.io/NVTabular/main/Introduction.html). Next to this, it’s also possible to construct it manually.
categorical (Union[Tags, Layer], defaults to Tags.CATEGORICAL) – A block or column-selector to use for categorical-features. If a column-selector is provided (either a schema or tags), the selector will be passed to Embeddings() to infer the embedding tables from the column-selector.
continuous (Union[Tags, Layer], defaults to Tags.CONTINUOUS) – A block to use for continuous-features. If a column-selector is provided (either a schema or tags), the selector will be passed to Continuous() to infer the features from the column-selector.
pretrained_embeddings (Union[Tags, Layer], defaults to Tags.EMBEDDING) – A block to use for pre-trained embeddings If a column-selector is provided (either a schema or tags), the selector will be passed to PretrainedEmbeddings() to infer the features from the column-selector.
pre (Optional[BlockType], optional) – Transformation block to apply before the embeddings lookup, by default None
post (Optional[BlockType], optional) – Transformation block to apply after the embeddings lookup, by default None
aggregation (Optional[TabularAggregationType], optional) – Transformation block to apply for aggregating the inputs, by default “concat”
tag_to_block (Dict[str, Callable[[Schema], Layer]], optional) –
- Mapping from tag to block-type, by default:
Tags.CONTINUOUS -> Continuous Tags.CATEGORICAL -> Embeddings
**branches (dict) – Extra branches to add to the input block.
- Returns
Returns a ParallelBlock with a Dict with two branches: continuous and embeddings
- Return type