merlin.models.tf.ReplaceMaskedEmbeddings#
- class merlin.models.tf.ReplaceMaskedEmbeddings(*args, **kwargs)[source]#
Bases:
merlin.models.tf.core.base.Block
Takes a 3D input tensor (batch size x seq. length x embedding dim) and replaces by a dummy trainable single embedding at the positions to be masked.
This is useful to be used when PredictMasked() transformation is used in the fit()/eval() methods, which randomly selects some targets to be predicted and uses Keras Masking to cascade the _keras_mask. By replacing input embeddings at masked positions we avoid target leakage when training models with Masked Language Modeling (BERT-like).
To support masked training approach in Transformer-based model, SequenceMaskRandom and SequenceLastRandom implements configure_for_train method that sets ReplaceMaskedEmbeddings as part of the masking_pre of the transformer block.
Methods
__init__
(**kwargs)add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, ...])Adds a new variable to the layer.
as_tabular
([name])build
(input_shape)build_from_config
(config)call
(inputs)If the sequence of input embeddings is masked (with tensor._keras_mask defined), replaces the input embeddings for masked elements :param inputs: A tensor with sequences of vectors. Needs to be 3D (batch_size, sequence_length, embeddings dim). If inputs._keras_mask is defined uses it to infer the mask :type inputs: Union[tf.Tensor, tf.RaggedTensor].
call_outputs
(outputs[, training])check_schema
([schema])compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_output_shape
(input_shape)Computes the output shape of the layer.
compute_output_signature
(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect
(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch
(*branches[, add_rest, post, ...])Connect the block to one or multiple branches.
connect_debug_block
([append])Connect the block to a debug block.
connect_with_residual
(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut
(block[, ...])Connect the block to other blocks sequentially with a shortcut connection.
copy
()count_params
()Count the total number of scalars composing the weights.
finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config)Creates a layer from its config.
from_layer
(layer)get_build_config
()get_config
()get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs
(inputs)get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id
(inputs[, ...])get_weights
()Returns the current weights of the layer, as NumPy arrays.
parse
(*block)parse_block
(input)prepare
([block, post, aggregation])Transform the inputs of this block.
register_features
(feature_shapes)repeat
([num])Repeat the block num times.
repeat_in_parallel
([num, prefix, names, ...])Repeat the block num times in parallel.
select_by_name
(name)select_by_tag
(tags)set_schema
([schema])set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMA
activity_regularizer
Optional regularizer function for the output of this layer.
compute_dtype
The dtype of the layer's computations.
context
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
has_schema
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
registry
schema
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable
trainable_variables
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.
- call(inputs: Union[tensorflow.python.framework.ops.Tensor, tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor]) Union[tensorflow.python.framework.ops.Tensor, tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor] [source]#
If the sequence of input embeddings is masked (with tensor._keras_mask defined), replaces the input embeddings for masked elements :param inputs: A tensor with sequences of vectors.
Needs to be 3D (batch_size, sequence_length, embeddings dim). If inputs._keras_mask is defined uses it to infer the mask
- Returns
returns a tensor with the masked inputs replaced by the dummy embedding
- Return type
Union[tf.Tensor, tf.RaggedTensor]