merlin.models.tf.AverageEmbeddingsByWeightFeature
-
class
merlin.models.tf.AverageEmbeddingsByWeightFeature(*args, **kwargs)[source] Bases:
keras.engine.base_layer.Layer-
__init__(weight_feature_name: str, axis=1, **kwargs)[source] Computes the weighted average of a Tensor based on one of the input features. Typically used as a combiner for EmbeddingTable for aggregating sequential embedding features
Methods
__init__(weight_feature_name[, axis])Computes the weighted average of a Tensor based on one of the input features.
add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
build(input_shape)Creates the variables of the layer (for subclass implementers).
build_from_config(config)call(inputs, features)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shape)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)Creates a layer from its config.
from_schema_convention(schema[, …])Infers the weight features corresponding to sequential embedding features based on the feature name suffix.
get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_weights()Returns the current weights of the layer, as NumPy arrays.
set_weights(weights)Sets the weights of the layer, from NumPy arrays.
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
dtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
inbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
lossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
statefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
static
from_schema_convention(schema: merlin.schema.schema.Schema, weight_features_name_suffix: str = '_weight')[source] Infers the weight features corresponding to sequential embedding features based on the feature name suffix. For example, if a sequential categorical feature is called item_id_seq, if there is another feature in the schema called item_id_seq_weight, then it will be used for weighted average. If a weight feature cannot be found for a given seq cat. feature then standard mean is used as combiner
- Parameters
schema (Schema) – The feature schema
weight_features_name_suffix (str) – Suffix to look for a corresponding weight feature
- Returns
A dict where the key is the sequential categorical feature name and the value is an instance of WeightedAverageByFeature with the corresponding weight feature name
- Return type
Dict[str, WeightedAverageByFeature]
-