merlin.models.tf.ReplaceMaskedEmbeddings
-
class
merlin.models.tf.ReplaceMaskedEmbeddings(*args, **kwargs)[source] Bases:
merlin.models.tf.core.base.BlockTakes a 3D input tensor (batch size x seq. length x embedding dim) and replaces by a dummy trainable single embedding at the positions to be masked.
This is useful to be used when PredictMasked() transformation is used in the fit()/eval() methods, which randomly selects some targets to be predicted and uses Keras Masking to cascade the _keras_mask. By replacing input embeddings at masked positions we avoid target leakage when training models with Masked Language Modeling (BERT-like).
To support masked training approach in Transformer-based model, SequenceMaskRandom and SequenceLastRandom implements configure_for_train method that sets ReplaceMaskedEmbeddings as part of the masking_pre of the transformer block.
Methods
__init__(**kwargs)add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
as_tabular([name])build(input_shape)build_from_config(config)call(inputs)If the sequence of input embeddings is masked (with tensor._keras_mask defined), replaces the input embeddings for masked elements :param inputs: A tensor with sequences of vectors. Needs to be 3D (batch_size, sequence_length, embeddings dim). If inputs._keras_mask is defined uses it to infer the mask :type inputs: Union[tf.Tensor, tf.RaggedTensor].
call_outputs(outputs[, training])check_schema([schema])compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shape)Computes the output shape of the layer.
compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)Creates a layer from its config.
from_layer(layer)get_build_config()get_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_weights()Returns the current weights of the layer, as NumPy arrays.
parse(*block)parse_block(input)prepare([block, post, aggregation])Transform the inputs of this block.
register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
select_by_name(name)select_by_tag(tags)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMAactivity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
has_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
lossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
registryschemastatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
call(inputs: Union[tensorflow.python.framework.ops.Tensor, tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor]) → Union[tensorflow.python.framework.ops.Tensor, tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor][source] If the sequence of input embeddings is masked (with tensor._keras_mask defined), replaces the input embeddings for masked elements :param inputs: A tensor with sequences of vectors.
Needs to be 3D (batch_size, sequence_length, embeddings dim). If inputs._keras_mask is defined uses it to infer the mask
- Returns
returns a tensor with the masked inputs replaced by the dummy embedding
- Return type
Union[tf.Tensor, tf.RaggedTensor]
-