merlin.models.tf.BinaryClassificationTask
-
class
merlin.models.tf.BinaryClassificationTask(*args, **kwargs)[source] Bases:
merlin.models.tf.prediction_tasks.base.PredictionTaskPrediction task for binary classification.
- Parameters
-
__init__(target: Optional[Union[str, merlin.schema.schema.Schema]] = None, task_name: Optional[str] = None, task_block: Optional[keras.engine.base_layer.Layer] = None, **kwargs)[source]
Methods
__init__([target, task_name, task_block])add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
build(input_shape[, features_shape])build_from_config(config)build_task(input_shape, schema, body, **kwargs)call(inputs[, training])child_name(name)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shape)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params()Count the total number of scalars composing the weights.
create_default_metrics()finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_weights()Returns the current weights of the layer, as NumPy arrays.
pre_call(inputs, **kwargs)Apply PredictionTask to inputs to get predictions scores
pre_loss(outputs, **kwargs)Apply call_outputs method of pre block to transform predictions and targets before computing loss and metrics.
set_weights(weights)Sets the weights of the layer, from NumPy arrays.
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
inbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
lossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
pre_eval_topkstatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
task_nametrainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
DEFAULT_LOSS= 'binary_crossentropy'
-
DEFAULT_METRICS= (functools.partial(<class 'keras.metrics.confusion_metrics.Precision'>, name='precision'), functools.partial(<class 'keras.metrics.confusion_metrics.Recall'>, name='recall'), functools.partial(<class 'keras.metrics.accuracy_metrics.BinaryAccuracy'>, name='binary_accuracy'), functools.partial(<class 'keras.metrics.confusion_metrics.AUC'>, name='auc'))