merlin.models.tf.PredictionTask
-
class
merlin.models.tf.PredictionTask(*args, **kwargs)[source] Bases:
keras.engine.base_layer.Layer,merlin.models.tf.core.base.ContextMixinBase-class for prediction tasks.
- Parameters
target_name (Optional[str], optional) – Label name, by default None
task_name (Optional[str], optional) – Task name, by default None
metrics (Optional[MetricOrMetrics], optional) – List of Keras metrics to be evaluated, by default None
pre (Optional[Block], optional) – Optional block to transform predictions before computing loss and metrics, by default None
pre_eval_topk (Optional[Block], optional) – Optional block to apply additional transform predictions before computing top-k evaluation loss and metrics, by default None
task_block (Optional[Layer], optional) – Optional block to apply to inputs before computing predictions, by default None
prediction_metrics (Optional[List[tf.keras.metrics.Metric]], optional) – List of Keras metrics used to summarize the predictions, by default None
label_metrics (Optional[List[tf.keras.metrics.Metric]], optional) – List of Keras metrics used to summarize the labels, by default None
compute_train_metrics (Optional[bool], optional) – Enable computing metrics during training, by default True
name (Optional[Text], optional) – Task name, by default None
-
__init__(target_name: Optional[str] = None, task_name: Optional[str] = None, pre: Optional[merlin.models.tf.core.base.Block] = None, pre_eval_topk: Optional[merlin.models.tf.core.base.Block] = None, task_block: Optional[keras.engine.base_layer.Layer] = None, name: Optional[str] = None, **kwargs) → None[source]
Methods
__init__([target_name, task_name, pre, …])add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
build(input_shape[, features_shape])build_from_config(config)build_task(input_shape, schema, body, **kwargs)call(inputs, *args, **kwargs)This is where the layer’s logic lives.
child_name(name)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shape)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_weights()Returns the current weights of the layer, as NumPy arrays.
pre_call(inputs, **kwargs)Apply PredictionTask to inputs to get predictions scores
pre_loss(outputs, **kwargs)Apply call_outputs method of pre block to transform predictions and targets before computing loss and metrics.
set_weights(weights)Sets the weights of the layer, from NumPy arrays.
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
inbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
lossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
statefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
property
pre_eval_topk
-
pre_call(inputs: Union[tensorflow.python.framework.ops.Tensor, Dict[str, tensorflow.python.framework.ops.Tensor]], **kwargs) → tensorflow.python.framework.ops.Tensor[source] Apply PredictionTask to inputs to get predictions scores
- Parameters
inputs (TensorOrTabularData) – inputs of the prediction task
- Returns
- Return type
tf.Tensor
-
pre_loss(outputs: merlin.models.tf.core.base.PredictionOutput, **kwargs) → merlin.models.tf.core.base.PredictionOutput[source] Apply call_outputs method of pre block to transform predictions and targets before computing loss and metrics.
- Parameters
outputs (PredictionOutput) – The named tuple containing predictions and targets tensors
- Returns
The named tuple containing transformed predictions and targets tensors
- Return type
PredictionOutput
-
build_task(input_shape, schema: merlin.schema.schema.Schema, body: merlin.models.tf.core.base.Block, **kwargs)[source]
-
property
task_name