merlin.models.tf.ParallelBlock
-
class
merlin.models.tf.ParallelBlock(*args, **kwargs)[source] Bases:
merlin.models.tf.core.tabular.TabularBlockMerge multiple layers or TabularModule’s into a single output of TabularData.
- Parameters
inputs (Union[tf.keras.layers.Layer, Dict[str, tf.keras.layers.Layer]]) – keras layers to merge into, this can also be one or multiple layers keyed by the name the module should have.
pre (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs when the module is called (so before call).
post (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs after the module is called (so after call).
aggregation (Union[str, TabularAggregation], optional) –
Aggregation to apply after processing the call-method to output a single Tensor.
Next to providing a class that extends TabularAggregation, it’s also possible to provide the name that the class is registered in the tabular_aggregation_registry. Out of the box this contains: “concat”, “stack”, “element-wise-sum” & “element-wise-sum-item-multi”.
schema (Optional[DatasetSchema]) – DatasetSchema containing the columns used in this block.
name (Optional[str]) – Name of the layer.
use_layer_name (use the original name of layers provided in inputs as key-index of the) – parallel branches.
strict – If true, inputs must be a dictionary. Otherwise, an error will be raised.
automatic_pruning – If true, branches with no output will automatically be pruned.
**kwargs – Extra arguments to pass to TabularBlock.
-
__init__(*inputs: Union[keras.engine.base_layer.Layer, Dict[str, keras.engine.base_layer.Layer]], pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None, schema: Optional[merlin.schema.schema.Schema] = None, name: Optional[str] = None, strict: bool = False, automatic_pruning: bool = True, use_layer_name: bool = True, **kwargs)[source]
Methods
__init__(*inputs[, pre, post, aggregation, …])add_branch(name, block)add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
apply_to_all(inputs[, columns_to_filter])apply_to_branch(branch_name, *block)as_tabular([name])build(input_shape)build_from_config(config)calculate_batch_size_from_input_shapes(…)call(inputs, **kwargs)The call method for ParallelBlock
call_outputs(outputs[, training])check_schema([schema])compute_call_output_shape(input_shape)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shapes)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config[, custom_objects])from_features(features[, pre, post, …])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer(layer)from_schema(schema[, tags, allow_none])Instantiate a TabularLayer instance from a DatasetSchema.
get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_weights()Returns the current weights of the layer, as NumPy arrays.
parse(*block)parse_block(input)parse_config(config[, custom_objects])post_call(inputs[, transformations, …])Method that’s typically called after the forward method for post-processing.
pre_call(inputs[, transformations])Method that’s typically called before the forward method for pre-processing.
prepare([block, post, aggregation])Transform the inputs of this block.
register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
repr_add()repr_extra()repr_ignore()select_by_name(name)Select a parallel block by name
select_by_names(names)Select a list of parallel blocks by names
select_by_tag(tags)Select layers of parallel blocks by tags.
set_aggregation(value)- param value
set_post(value)set_pre(value)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
super()with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMAactivity_regularizerOptional regularizer function for the output of this layer.
aggregationreturns: :rtype: TabularAggregation, optional
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
has_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
is_inputis_tabularlossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
postreturns: :rtype: SequentialTabularTransformations, optional
prereturns: :rtype: SequentialTabularTransformations, optional
registrystatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
property
schema
-
property
parallel_values
-
property
parallel_dict
-
property
layers
-
select_by_name(name: str) → Optional[merlin.models.tf.core.base.Block][source] Select a parallel block by name
- Returns
The block corresponding to the name
- Return type
Block
-
select_by_names(names: List[str]) → Optional[List[merlin.models.tf.core.base.Block]][source] Select a list of parallel blocks by names
- Returns
The blocks corresponding to the names
- Return type
List[Block]
-
select_by_tag(tags: Union[str, merlin.schema.tags.Tags, List[Union[str, merlin.schema.tags.Tags]]]) → Optional[merlin.models.tf.core.combinators.ParallelBlock][source] Select layers of parallel blocks by tags.
This method will return a ParallelBlock instance with all the branches that have at least one feature that matches any of the tags provided.
For example, this method can be useful when a ParallelBlock has both item and user features in a two-tower model or DLRM, and we want to select only the item or user features.
>>> all_inputs = InputBlockV2(schema) # InputBlock is also a ParallelBlock >>> item_inputs = all_inputs.select_by_tag(Tags.ITEM) ['continuous', 'embeddings'] >>> item_inputs.schema["continuous"].column_names ['item_recency'] >>> item_inputs.schema["embeddings"].column_names ['item_id', 'item_category', 'item_genres']
-
property
first
-
add_branch(name: str, block: merlin.models.tf.core.base.Block) → merlin.models.tf.core.combinators.ParallelBlock[source]