merlin.models.tf.ParallelPredictionBlock
-
class
merlin.models.tf.ParallelPredictionBlock(*args, **kwargs)[source] Bases:
merlin.models.tf.core.combinators.ParallelBlockMulti-task prediction block.
- Parameters
prediction_tasks (*PredictionTask) – List of tasks to be used for prediction.
task_blocks (Optional[Union[Layer, Dict[str, Layer]]]) – Task blocks to be used for prediction.
task_weights (Optional[List[float]]) – Weights for each task.
bias_block (Optional[Layer]) – Bias block to be used for prediction.
-
__init__(*prediction_tasks: merlin.models.tf.prediction_tasks.base.PredictionTask, task_blocks: Optional[Union[keras.engine.base_layer.Layer, Dict[str, keras.engine.base_layer.Layer]]] = None, bias_block: Optional[keras.engine.base_layer.Layer] = None, task_weights=None, pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, **kwargs)[source]
Methods
__init__(*prediction_tasks[, task_blocks, …])add_branch(name, block)add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_task(task[, task_weight])add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
apply_to_all(inputs[, columns_to_filter])apply_to_branch(branch_name, *block)as_tabular([name])build(input_shape)build_from_config(config)calculate_batch_size_from_input_shapes(…)call(inputs[, training, bias_outputs])call_outputs(outputs[, training])check_schema([schema])compute_call_output_shape(input_shape)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shapes)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config, **kwargs)from_features(features[, pre, post, …])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer(layer)from_schema(schema[, task_blocks, …])Built Multi-task prediction Block from schema
get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_tasks_from_schema(schema[, …])Built Multi-task prediction Block from schema
get_weights()Returns the current weights of the layer, as NumPy arrays.
parse(*block)parse_block(input)parse_config(config[, custom_objects])pop_labels(inputs)post_call(inputs[, transformations, …])Method that’s typically called after the forward method for post-processing.
pre_call(inputs[, transformations])Method that’s typically called before the forward method for pre-processing.
prepare([block, post, aggregation])Transform the inputs of this block.
register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
repr_add()repr_extra()select_by_name(name)Select a parallel block by name
select_by_names(names)Select a list of parallel blocks by names
select_by_tag(tags)Select layers of parallel blocks by tags.
set_aggregation(value)- param value
set_post(value)set_pre(value)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
super()task_names_from_schema(schema)with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMAactivity_regularizerOptional regularizer function for the output of this layer.
aggregationreturns: :rtype: TabularAggregation, optional
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
firsthas_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
is_inputis_tabularlayerslossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
parallel_dictparallel_valuespostreturns: :rtype: SequentialTabularTransformations, optional
prereturns: :rtype: SequentialTabularTransformations, optional
registryschemastatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
classmethod
get_tasks_from_schema(schema, task_weight_dict: Optional[Dict[str, float]] = None, task_pre_dict: Optional[Dict[str, merlin.models.tf.core.base.Block]] = None)[source] Built Multi-task prediction Block from schema
- Parameters
schema (Schema) – The Schema with the input features
task_weight_dict (Optional[Dict[str, float]], optional) – Dict where keys are target feature names and values are weights for each task, by default None
task_pre_dict (Optional[Dict[str, Block]], optional) – Dict where keys are target feature names and values are Blocks to be used as pre for those tasks
-
classmethod
from_schema(schema: merlin.schema.schema.Schema, task_blocks: Optional[Union[keras.engine.base_layer.Layer, Dict[str, keras.engine.base_layer.Layer]]] = None, task_weight_dict: Optional[Dict[str, float]] = None, task_pre_dict: Optional[Dict[str, merlin.models.tf.core.base.Block]] = None, bias_block: Optional[keras.engine.base_layer.Layer] = None, **kwargs) → merlin.models.tf.prediction_tasks.base.ParallelPredictionBlock[source] Built Multi-task prediction Block from schema
- Parameters
schema (Schema) – The Schema with the input features
task_blocks (Optional[Union[Layer, Dict[str, Layer]]], optional) – Task blocks to be used for prediction, by default None
task_weight_dict (Optional[Dict[str, float]], optional) – Dict where keys are target feature names and values are weights for each task, by default None
task_pre_dict (Optional[Dict[str, Block]], optional) – Dict where keys are target feature names and values are Blocks to be used as pre for those tasks
bias_block (Optional[Layer], optional) – Bias block to be used for prediction, by default None
-
classmethod
task_names_from_schema(schema: merlin.schema.schema.Schema) → List[str][source]
-
call(inputs: Union[Dict[str, tensorflow.python.framework.ops.Tensor], tensorflow.python.framework.ops.Tensor], training: bool = False, bias_outputs=None, **kwargs)[source]
-
property
task_blocks
-
property
task_names
-
parallel_layers: Union[List[TabularBlock], Dict[str, TabularBlock]]