merlin.models.tf.Encoder#
- class merlin.models.tf.Encoder(*args, **kwargs)[source]#
Bases:
keras.engine.training.ModelBlock that can be used for prediction and evaluation but not for training
- Parameters
inputs (Union[Schema, tf.keras.layers.Layer]) – The input block or schema. When a schema is provided, a default input block will be created.
*blocks (tf.keras.layers.Layer) – The blocks to use for encoding.
pre (Optional[tf.keras.layers.Layer]) – A block to use before the main blocks
post (Optional[tf.keras.layers.Layer]) – A block to use after the main blocks
prep_features (Optional[bool]) – Whether this block should prepare list and scalar features from the dataloader format. By default True.
- __init__(inputs: Union[merlin.schema.schema.Schema, keras.engine.base_layer.Layer], *blocks: keras.engine.base_layer.Layer, pre: Optional[keras.engine.base_layer.Layer] = None, post: Optional[keras.engine.base_layer.Layer] = None, prep_features: Optional[bool] = True, **kwargs)[source]#
Methods
__init__(inputs, *blocks[, pre, post, ...])add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, ...])Adds a new variable to the layer.
batch_predict(dataset, batch_size[, ...])Batched prediction using Dask.
build(input_shape)Creates the variables of the layer.
build_from_config(config)call(inputs, *[, targets, training, testing])Calls the model on new inputs and returns the outputs as tensors.
compile([optimizer, loss, metrics, ...])Configures the model for training.
compile_from_config(config)compute_loss([x, y, y_pred, sample_weight])Compute the total loss, validate it, and return it.
compute_mask(inputs[, mask])Computes an output mask tensor.
compute_metrics(x, y, y_pred, sample_weight)Update metric states and collect all metrics to be returned.
compute_output_shape(input_shape)Computes the output shape of the layer.
compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params()Count the total number of scalars composing the weights.
encode(dataset, index, batch_size, **kwargs)Encodes the given dataset and index.
evaluate([x, y, batch_size, verbose, ...])Returns the loss value & metrics values for the model in test mode.
evaluate_generator(generator[, steps, ...])Evaluates the model on a data generator.
export(filepath)Create a SavedModel artifact for inference (e.g.
finalize_state()Finalizes the layers state after updating layer weights.
fit(*args, **kwargs)Fits the model.
fit_generator(generator[, steps_per_epoch, ...])Fits the model on data yielded batch-by-batch by a Python generator.
from_config(config[, custom_objects])Creates a new instance of the class by deserializing.
get_build_config()get_compile_config()Returns the configuration of the model as a dictionary.
get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_layer([name, index])Retrieves a layer based on either its name (unique) or index.
get_metrics_result()Returns the model's metrics values as a dict.
get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_weight_paths()Retrieve all the variables and their paths for the model.
get_weights()Retrieves the weights of the model.
load_weights(filepath[, skip_mismatch, ...])Loads all layer weights from a saved files.
make_predict_function([force])Creates a function that executes one step of inference.
make_test_function([force])Creates a function that executes one step of evaluation.
make_train_function([force])Creates a function that executes one step of training.
predict(x[, batch_size, verbose, steps, ...])Generates output predictions for the input samples.
predict_generator(generator[, steps, ...])Generates predictions for the input samples from a data generator.
predict_on_batch(x)Returns predictions for a single batch of samples.
predict_step(data)The logic for one inference step.
reset_metrics()Resets the state of all the metrics in the model.
reset_states()save(export_path[, include_optimizer, ...])Saves the model to export_path as a Tensorflow Saved Model.
save_spec([dynamic_batch])Returns the tf.TensorSpec of call args as a tuple (args, kwargs).
save_weights(filepath[, overwrite, ...])Saves all layer weights.
set_weights(weights)Sets the weights of the layer, from NumPy arrays.
summary([line_length, positions, print_fn, ...])Prints a string summary of the network.
test_on_batch(x[, y, sample_weight, ...])Test the model on a single batch of samples.
test_step(data)The logic for one evaluation step.
to_json(**kwargs)Returns a JSON string containing the network configuration.
to_yaml(**kwargs)Returns a yaml string containing the network configuration.
train_on_batch(x[, y, sample_weight, ...])Runs a single gradient update on a single batch of data.
train_step(data)Performs a training step.
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer's computations.
distribute_reduction_methodThe method employed to reduce per-replica values during training.
distribute_strategyThe tf.distribute.Strategy this model was created under.
dtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
Returns the first block of the model.
Returns True as this class does contain a schema.
inbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
jit_compileSpecify whether to compile the model with XLA.
Returns the last block of the model.
layerslossesList of losses added using the add_loss() API.
metricsReturn metrics added using compile() or add_metric().
metrics_namesReturns the model's display labels for all outputs.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsoutbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
run_eagerlySettable attribute indicating whether the model should run eagerly.
Returns the schema of the model.
state_updatesDeprecated, do NOT use!
statefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
Provides the list of blocks to be called during the execution of the model.
trainabletrainable_variablestrainable_weightsupdatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
- encode(dataset: Union[merlin.io.dataset.Dataset, merlin.models.tf.loader.Loader], index: Union[str, merlin.schema.schema.ColumnSchema, merlin.schema.schema.Schema, merlin.schema.tags.Tags], batch_size: int, **kwargs) merlin.io.dataset.Dataset[source]#
Encodes the given dataset and index.
- Parameters
dataset (Union[merlin.io.Dataset, merlin.models.tf.loader.Loader]) – The dataset to encode.
index (Union[str, ColumnSchema, Schema, Tags]) – The index to use for encoding.
batch_size (int) – The batch size for encoding.
- Returns
The encoded dataset.
- Return type
- batch_predict(dataset: Union[merlin.io.dataset.Dataset, merlin.models.tf.loader.Loader], batch_size: int, output_schema: Optional[merlin.schema.schema.Schema] = None, index: Optional[Union[str, merlin.schema.schema.ColumnSchema, merlin.schema.schema.Schema, merlin.schema.tags.Tags]] = None, **kwargs) merlin.io.dataset.Dataset[source]#
Batched prediction using Dask.
- Parameters
dataset (Union[merlin.io.Dataset, merlin.models.tf.loader.Loader]) – Dataset or Loader to predict on.
batch_size (int) – Batch size to use for prediction.
- Return type
- call(inputs, *, targets=None, training=False, testing=False, **kwargs)[source]#
Calls the model on new inputs and returns the outputs as tensors.
- Parameters
inputs (tensor-like or dict/tuple of tensors.) – Tensors or dict/tuple of tensors representing the input batch.
targets (tensor-like, optional) – Tensors representing the target data.
training (bool, optional) – Whether the model is in training mode.
testing (bool, optional) – Whether the model is in testing mode.
- Return type
A tensor or dict of tensors corresponding to the result of calling the layer.
- build(input_shape)[source]#
Creates the variables of the layer.
- Parameters
input_shape (Tuple[int]) – The shape of the input data.
- train_step(data)[source]#
Performs a training step.
Train step method is not implemented and Raises an error as the Encoder block is not meant to be trained by itself and can only be trained as part of a model.
- fit(*args, **kwargs)[source]#
Fits the model.
Fit method is not implemented and Raises an error as the Encoder block is not meant to be trained by itself and can only be trained as part of a model.
- save(export_path: Union[str, os.PathLike], include_optimizer=True, save_traces=True) None[source]#
Saves the model to export_path as a Tensorflow Saved Model. Along with merlin model metadata.
- Parameters
export_path (Union[str, os.PathLike]) – Path where model will be saved to
include_optimizer (bool, optional) – If False, do not save the optimizer state, by default True
save_traces (bool, optional) – When enabled, will store the function traces for each layer. This can be disabled, so that only the configs of each layer are stored, by default True
- property to_call#
Provides the list of blocks to be called during the execution of the model.
- property schema: merlin.schema.schema.Schema#
Returns the schema of the model.
- property first#
Returns the first block of the model.
- property last#
Returns the last block of the model.