merlin.models.tf.ParallelBlock#
- class merlin.models.tf.ParallelBlock(*args, **kwargs)[source]#
Bases:
merlin.models.tf.core.tabular.TabularBlock
Merge multiple layers or TabularModule’s into a single output of TabularData.
- Parameters
inputs (Union[tf.keras.layers.Layer, Dict[str, tf.keras.layers.Layer]]) – keras layers to merge into, this can also be one or multiple layers keyed by the name the module should have.
pre (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs when the module is called (so before call).
post (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs after the module is called (so after call).
aggregation (Union[str, TabularAggregation], optional) –
Aggregation to apply after processing the call-method to output a single Tensor.
Next to providing a class that extends TabularAggregation, it’s also possible to provide the name that the class is registered in the tabular_aggregation_registry. Out of the box this contains: “concat”, “stack”, “element-wise-sum” & “element-wise-sum-item-multi”.
schema (Optional[DatasetSchema]) – DatasetSchema containing the columns used in this block.
name (Optional[str]) – Name of the layer.
use_layer_name (use the original name of layers provided in inputs as key-index of the) – parallel branches.
strict – If true, inputs must be a dictionary. Otherwise, an error will be raised.
automatic_pruning – If true, branches with no output will automatically be pruned.
**kwargs – Extra arguments to pass to TabularBlock.
- __init__(*inputs: Union[keras.engine.base_layer.Layer, Dict[str, keras.engine.base_layer.Layer]], pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None, schema: Optional[merlin.schema.schema.Schema] = None, name: Optional[str] = None, strict: bool = False, automatic_pruning: bool = True, use_layer_name: bool = True, **kwargs)[source]#
Methods
__init__
(*inputs[, pre, post, aggregation, ...])add_branch
(name, block)add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, ...])Adds a new variable to the layer.
apply_to_all
(inputs[, columns_to_filter])apply_to_branch
(branch_name, *block)as_tabular
([name])build
(input_shape)build_from_config
(config)calculate_batch_size_from_input_shapes
(...)call
(inputs, **kwargs)The call method for ParallelBlock
call_outputs
(outputs[, training])check_schema
([schema])compute_call_output_shape
(input_shape)compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_output_shape
(input_shapes)compute_output_signature
(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect
(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch
(*branches[, add_rest, post, ...])Connect the block to one or multiple branches.
connect_debug_block
([append])Connect the block to a debug block.
connect_with_residual
(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut
(block[, ...])Connect the block to other blocks sequentially with a shortcut connection.
copy
()count_params
()Count the total number of scalars composing the weights.
finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config[, custom_objects])from_features
(features[, pre, post, ...])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer
(layer)from_schema
(schema[, tags, allow_none])Instantiate a TabularLayer instance from a DatasetSchema.
get_build_config
()get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs
(inputs)get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id
(inputs[, ...])get_weights
()Returns the current weights of the layer, as NumPy arrays.
parse
(*block)parse_block
(input)parse_config
(config[, custom_objects])post_call
(inputs[, transformations, ...])Method that's typically called after the forward method for post-processing.
pre_call
(inputs[, transformations])Method that's typically called before the forward method for pre-processing.
prepare
([block, post, aggregation])Transform the inputs of this block.
register_features
(feature_shapes)repeat
([num])Repeat the block num times.
repeat_in_parallel
([num, prefix, names, ...])Repeat the block num times in parallel.
repr_add
()repr_extra
()repr_ignore
()select_by_name
(name)Select a parallel block by name
select_by_names
(names)Select a list of parallel blocks by names
select_by_tag
(tags)Select layers of parallel blocks by tags.
set_aggregation
(value)- param value
set_post
(value)set_pre
(value)set_schema
([schema])set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
super
()with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMA
activity_regularizer
Optional regularizer function for the output of this layer.
aggregation
rtype: TabularAggregation, optional
compute_dtype
The dtype of the layer's computations.
context
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
has_schema
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
is_input
is_tabular
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
post
rtype: SequentialTabularTransformations, optional
pre
rtype: SequentialTabularTransformations, optional
registry
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable
trainable_variables
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.
- property schema#
- property parallel_values: List[keras.engine.base_layer.Layer]#
- property layers: List[keras.engine.base_layer.Layer]#
- select_by_name(name: str) Optional[merlin.models.tf.core.base.Block] [source]#
Select a parallel block by name
- Returns
The block corresponding to the name
- Return type
Block
- select_by_names(names: List[str]) Optional[List[merlin.models.tf.core.base.Block]] [source]#
Select a list of parallel blocks by names
- Returns
The blocks corresponding to the names
- Return type
List[Block]
- select_by_tag(tags: Union[str, merlin.schema.tags.Tags, List[Union[str, merlin.schema.tags.Tags]]]) Optional[merlin.models.tf.core.combinators.ParallelBlock] [source]#
Select layers of parallel blocks by tags.
This method will return a ParallelBlock instance with all the branches that have at least one feature that matches any of the tags provided.
For example, this method can be useful when a ParallelBlock has both item and user features in a two-tower model or DLRM, and we want to select only the item or user features.
>>> all_inputs = InputBlockV2(schema) # InputBlock is also a ParallelBlock >>> item_inputs = all_inputs.select_by_tag(Tags.ITEM) ['continuous', 'embeddings'] >>> item_inputs.schema["continuous"].column_names ['item_recency'] >>> item_inputs.schema["embeddings"].column_names ['item_id', 'item_category', 'item_genres']
- property first: merlin.models.tf.core.base.Block#
- add_branch(name: str, block: merlin.models.tf.core.base.Block) merlin.models.tf.core.combinators.ParallelBlock [source]#