merlin.models.tf.EmbeddingTable#
- class merlin.models.tf.EmbeddingTable(*args, **kwargs)[source]#
Bases:
merlin.models.tf.inputs.embedding.EmbeddingTableBase
Embedding table that is backed by a standard Keras Embedding Layer. It accepts as input features for lookup tf.Tensor, tf.RaggedTensor, and tf.SparseTensor which might be 2D (batch_size, 1) for scalars or 3d (batch_size, seq_length, 1) for sequential features
- Parameters
dim (int) – The dimension of the dense embedding.
col_schemas (ColumnSchema) – The schema of the column(s) used to infer the cardinality.
embeddings_initializer (str, optional) – The initializer for the embeddings matrix (see keras.initializers), by default “uniform”.
embeddings_regularizer (str, optional) – The regularizer function applied to the embeddings matrix (see keras.regularizers), by default None.
embeddings_constraint (str, optional) – The constraint function applied to the embeddings matrix (see keras.constraints), by default None.
mask_zero (bool, optional) – Whether or not the input value 0 is a special “padding” value that should be masked out. This is useful when using recurrent layers which may take variable length input, by default False.
input_length (int, optional) – The length of input sequences when it is constant, by default None.
sequence_combiner (CombinerType, optional) – A string specifying how to combine embedding results for each entry (“mean”, “sqrtn” and “sum” are supported) or a layer. Default is None (no combiner used).
trainable (bool, optional) – Whether the layer’s variables should be trainable, by default True.
name (str, optional) – The name of the layer, by default None.
dtype (str, optional) – The data type of the layer’s computations and weights. It can also be a tf.keras.mixed_precision.Policy, which allows the computation and weight dtype to differ, by default None.
dynamic (bool, optional) – Set this to True if the layer should only be run eagerly and should not be used to generate a static computation graph, by default False.
l2_batch_regularization_factor (float, optional) – The factor for L2 regularization of the embeddings vectors (from the current batch only), by default 0.0.
**kwargs – Other keyword arguments forwarded to the Keras Layer.
- __init__(dim: int, *col_schemas: merlin.schema.schema.ColumnSchema, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None, sequence_combiner: Optional[Union[str, keras.engine.base_layer.Layer]] = None, trainable=True, name=None, dtype=None, dynamic=False, table=None, l2_batch_regularization_factor=0.0, weights=None, **kwargs)[source]#
Create an EmbeddingTable.
Methods
__init__
(dim, *col_schemas[, ...])Create an EmbeddingTable.
add_feature
(col_schema)Add a feature to the table.
add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, ...])Adds a new variable to the layer.
as_tabular
([name])build
(input_shapes)Builds the EmbeddingTable based on the input shapes.
build_from_config
(config)call
(inputs, **kwargs)- param inputs
Tensors or dictionary of tensors representing the input batch.
call_outputs
(outputs[, training])check_schema
([schema])compute_call_output_shape
(input_shapes)Computes the shape of the output of a call to this layer.
compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_output_shape
(input_shape)Computes the shape of the output tensors.
compute_output_signature
(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect
(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch
(*branches[, add_rest, post, ...])Connect the block to one or multiple branches.
connect_debug_block
([append])Connect the block to a debug block.
connect_with_residual
(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut
(block[, ...])Connect the block to other blocks sequentially with a shortcut connection.
copy
()count_params
()Count the total number of scalars composing the weights.
finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config[, table])Creates an EmbeddingTable from its configuration.
from_dataset
(data[, trainable, name, col_schema])Create From pre-trained embeddings from a Dataset or DataFrame.
from_layer
(layer)from_pretrained
(data[, trainable, name, ...])Create From pre-trained embeddings from a Dataset or DataFrame.
get_build_config
()Returns the configuration of this EmbeddingTable.
get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs
(inputs)get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id
(inputs[, ...])get_weights
()Returns the current weights of the layer, as NumPy arrays.
parse
(*block)parse_block
(input)prepare
([block, post, aggregation])Transform the inputs of this block.
register_features
(feature_shapes)repeat
([num])Repeat the block num times.
repeat_in_parallel
([num, prefix, names, ...])Repeat the block num times in parallel.
select_by_name
(name)select_by_tag
(tags)Select features in EmbeddingTable by tags.
set_schema
([schema])set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
to_dataset
([gpu])Converts the EmbeddingTable to a merlin.io.Dataset.
to_df
([gpu])Converts the EmbeddingTable to a DataFrame.
with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMA
activity_regularizer
Optional regularizer function for the output of this layer.
compute_dtype
The dtype of the layer's computations.
context
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
has_schema
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_dim
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
registry
schema
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
table_name
trainable
trainable_variables
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.
- select_by_tag(tags: Union[merlin.schema.tags.Tags, Sequence[merlin.schema.tags.Tags]]) Optional[merlin.models.tf.inputs.embedding.EmbeddingTable] [source]#
Select features in EmbeddingTable by tags.
Since an EmbeddingTable can be a shared-embedding table, this method filters the schema for features that match the tags.
If none of the features match the tags, it will return None.
- Parameters
tags (Union[Tags, Sequence[Tags]]) – A list of tags.
- Return type
An EmbeddingTable if the tags match. If no features match, it returns None.
- classmethod from_pretrained(data: Union[merlin.io.dataset.Dataset, pandas.core.frame.DataFrame], trainable=True, name=None, col_schema=None, **kwargs) merlin.models.tf.inputs.embedding.EmbeddingTable [source]#
Create From pre-trained embeddings from a Dataset or DataFrame. :param data: A dataset containing the pre-trained embedding weights :type data: Union[Dataset, DataFrameType] :param trainable: Whether the layer should be trained or not. :type trainable: bool :param name: The name of the layer. :type name: str
- classmethod from_dataset(data: Union[merlin.io.dataset.Dataset, pandas.core.frame.DataFrame], trainable=True, name=None, col_schema=None, **kwargs) merlin.models.tf.inputs.embedding.EmbeddingTable [source]#
Create From pre-trained embeddings from a Dataset or DataFrame. :param data: A dataset containing the pre-trained embedding weights :type data: Union[Dataset, DataFrameType] :param trainable: Whether the layer should be trained or not. :type trainable: bool :param name: The name of the layer. :type name: str
- to_dataset(gpu=None) merlin.io.dataset.Dataset [source]#
Converts the EmbeddingTable to a merlin.io.Dataset.
- Parameters
gpu (bool) – Whether to use gpu.
- Returns
The dataset representation of the EmbeddingTable.
- Return type
- to_df(gpu=None)[source]#
Converts the EmbeddingTable to a DataFrame.
- Parameters
gpu (bool) – Whether to use gpu.
- Returns
The DataFrame representation of the EmbeddingTable.
- Return type
cudf or pandas DataFrame
- build(input_shapes)[source]#
Builds the EmbeddingTable based on the input shapes.
- Parameters
input_shapes (tf.TensorShape or dictionary of shapes.) – The shapes of the input tensors.
- call(inputs: Union[tensorflow.python.framework.ops.Tensor, Dict[str, tensorflow.python.framework.ops.Tensor]], **kwargs) Union[tensorflow.python.framework.ops.Tensor, Dict[str, tensorflow.python.framework.ops.Tensor]] [source]#
- Parameters
inputs (Union[tf.Tensor, tf.RaggedTensor, tf.SparseTensor]) – Tensors or dictionary of tensors representing the input batch.
- Return type
A tensor or dict of tensors corresponding to the embeddings for inputs
- compute_output_shape(input_shape: Union[tensorflow.python.framework.tensor_shape.TensorShape, Dict[str, tensorflow.python.framework.tensor_shape.TensorShape]]) Union[tensorflow.python.framework.tensor_shape.TensorShape, Dict[str, tensorflow.python.framework.tensor_shape.TensorShape]] [source]#
Computes the shape of the output tensors.
- compute_call_output_shape(input_shapes)[source]#
Computes the shape of the output of a call to this layer.
- Parameters
input_shapes (tf.TensorShape or dictionary of shapes.) – The shapes of the input tensors.
- Returns
The shape of the output of a call to this layer.
- Return type
Union[tf.TensorShape, Dict[str, tf.TensorShape]]