merlin.models.tf.ParallelBlock#

class merlin.models.tf.ParallelBlock(*args, **kwargs)[source]#

Bases: merlin.models.tf.core.tabular.TabularBlock

Merge multiple layers or TabularModule’s into a single output of TabularData.

Parameters
  • inputs (Union[tf.keras.layers.Layer, Dict[str, tf.keras.layers.Layer]]) – keras layers to merge into, this can also be one or multiple layers keyed by the name the module should have.

  • pre (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs when the module is called (so before call).

  • post (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs after the module is called (so after call).

  • aggregation (Union[str, TabularAggregation], optional) –

    Aggregation to apply after processing the call-method to output a single Tensor.

    Next to providing a class that extends TabularAggregation, it’s also possible to provide the name that the class is registered in the tabular_aggregation_registry. Out of the box this contains: “concat”, “stack”, “element-wise-sum” & “element-wise-sum-item-multi”.

  • schema (Optional[DatasetSchema]) – DatasetSchema containing the columns used in this block.

  • name (Optional[str]) – Name of the layer.

  • use_layer_name (use the original name of layers provided in inputs as key-index of the) – parallel branches.

  • strict – If true, inputs must be a dictionary. Otherwise, an error will be raised.

  • automatic_pruning – If true, branches with no output will automatically be pruned.

  • **kwargs – Extra arguments to pass to TabularBlock.

__init__(*inputs: Union[keras.engine.base_layer.Layer, Dict[str, keras.engine.base_layer.Layer]], pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None, schema: Optional[merlin.schema.schema.Schema] = None, name: Optional[str] = None, strict: bool = False, automatic_pruning: bool = True, use_layer_name: bool = True, **kwargs)[source]#

Methods

__init__(*inputs[, pre, post, aggregation, ...])

add_branch(name, block)

add_loss(losses, **kwargs)

Add loss tensor(s), potentially dependent on layer inputs.

add_metric(value[, name])

Adds metric tensor to the layer.

add_update(updates)

Add update op(s), potentially dependent on layer inputs.

add_variable(*args, **kwargs)

Deprecated, do NOT use! Alias for add_weight.

add_weight([name, shape, dtype, ...])

Adds a new variable to the layer.

apply_to_all(inputs[, columns_to_filter])

apply_to_branch(branch_name, *block)

as_tabular([name])

build(input_shape)

build_from_config(config)

calculate_batch_size_from_input_shapes(...)

call(inputs, **kwargs)

The call method for ParallelBlock

call_outputs(outputs[, training])

check_schema([schema])

compute_call_output_shape(input_shape)

compute_mask(inputs[, mask])

Computes an output mask tensor.

compute_output_shape(input_shapes)

compute_output_signature(input_signature)

Compute the output tensor signature of the layer based on the inputs.

connect(*block[, block_name, context])

Connect the block to other blocks sequentially.

connect_branch(*branches[, add_rest, post, ...])

Connect the block to one or multiple branches.

connect_debug_block([append])

Connect the block to a debug block.

connect_with_residual(block[, activation])

Connect the block to other blocks sequentially with a residual connection.

connect_with_shortcut(block[, ...])

Connect the block to other blocks sequentially with a shortcut connection.

copy()

count_params()

Count the total number of scalars composing the weights.

finalize_state()

Finalizes the layers state after updating layer weights.

from_config(config[, custom_objects])

from_features(features[, pre, post, ...])

Initializes a TabularLayer instance where the contents of features will be filtered out

from_layer(layer)

from_schema(schema[, tags, allow_none])

Instantiate a TabularLayer instance from a DatasetSchema.

get_build_config()

get_config()

get_input_at(node_index)

Retrieves the input tensor(s) of a layer at a given node.

get_input_mask_at(node_index)

Retrieves the input mask tensor(s) of a layer at a given node.

get_input_shape_at(node_index)

Retrieves the input shape(s) of a layer at a given node.

get_item_ids_from_inputs(inputs)

get_output_at(node_index)

Retrieves the output tensor(s) of a layer at a given node.

get_output_mask_at(node_index)

Retrieves the output mask tensor(s) of a layer at a given node.

get_output_shape_at(node_index)

Retrieves the output shape(s) of a layer at a given node.

get_padding_mask_from_item_id(inputs[, ...])

get_weights()

Returns the current weights of the layer, as NumPy arrays.

parse(*block)

parse_block(input)

parse_config(config[, custom_objects])

post_call(inputs[, transformations, ...])

Method that's typically called after the forward method for post-processing.

pre_call(inputs[, transformations])

Method that's typically called before the forward method for pre-processing.

prepare([block, post, aggregation])

Transform the inputs of this block.

register_features(feature_shapes)

repeat([num])

Repeat the block num times.

repeat_in_parallel([num, prefix, names, ...])

Repeat the block num times in parallel.

repr_add()

repr_extra()

repr_ignore()

select_by_name(name)

Select a parallel block by name

select_by_names(names)

Select a list of parallel blocks by names

select_by_tag(tags)

Select layers of parallel blocks by tags.

set_aggregation(value)

param value

set_post(value)

set_pre(value)

set_schema([schema])

set_weights(weights)

Sets the weights of the layer, from NumPy arrays.

super()

with_name_scope(method)

Decorator to automatically enter the module name scope.

Attributes

REQUIRES_SCHEMA

activity_regularizer

Optional regularizer function for the output of this layer.

aggregation

rtype: TabularAggregation, optional

compute_dtype

The dtype of the layer's computations.

context

dtype

The dtype of the layer weights.

dtype_policy

The dtype policy associated with this layer.

dynamic

Whether the layer is dynamic (eager-only); set in the constructor.

first

has_schema

inbound_nodes

Return Functional API nodes upstream of this layer.

input

Retrieves the input tensor(s) of a layer.

input_mask

Retrieves the input mask tensor(s) of a layer.

input_shape

Retrieves the input shape(s) of a layer.

input_spec

InputSpec instance(s) describing the input format for this layer.

is_input

is_tabular

layers

losses

List of losses added using the add_loss() API.

metrics

List of metrics added using the add_metric() API.

name

Name of the layer (string), set in the constructor.

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

non_trainable_weights

List of all non-trainable weights tracked by this layer.

outbound_nodes

Return Functional API nodes downstream of this layer.

output

Retrieves the output tensor(s) of a layer.

output_mask

Retrieves the output mask tensor(s) of a layer.

output_shape

Retrieves the output shape(s) of a layer.

parallel_dict

parallel_values

post

rtype: SequentialTabularTransformations, optional

pre

rtype: SequentialTabularTransformations, optional

registry

schema

stateful

submodules

Sequence of all sub-modules.

supports_masking

Whether this layer supports computing a mask using compute_mask.

trainable

trainable_variables

trainable_weights

List of all trainable weights tracked by this layer.

updates

variable_dtype

Alias of Layer.dtype, the dtype of the weights.

variables

Returns the list of all layer variables/weights.

weights

Returns the list of all layer variables/weights.

property schema#
property parallel_values: List[keras.engine.base_layer.Layer]#
property parallel_dict: Dict[Union[str, int], keras.engine.base_layer.Layer]#
property layers: List[keras.engine.base_layer.Layer]#
select_by_name(name: str) Optional[merlin.models.tf.core.base.Block][source]#

Select a parallel block by name

Returns

The block corresponding to the name

Return type

Block

select_by_names(names: List[str]) Optional[List[merlin.models.tf.core.base.Block]][source]#

Select a list of parallel blocks by names

Returns

The blocks corresponding to the names

Return type

List[Block]

select_by_tag(tags: Union[str, merlin.schema.tags.Tags, List[Union[str, merlin.schema.tags.Tags]]]) Optional[merlin.models.tf.core.combinators.ParallelBlock][source]#

Select layers of parallel blocks by tags.

This method will return a ParallelBlock instance with all the branches that have at least one feature that matches any of the tags provided.

For example, this method can be useful when a ParallelBlock has both item and user features in a two-tower model or DLRM, and we want to select only the item or user features.

>>> all_inputs = InputBlockV2(schema)  # InputBlock is also a ParallelBlock
>>> item_inputs = all_inputs.select_by_tag(Tags.ITEM)
['continuous', 'embeddings']
>>> item_inputs.schema["continuous"].column_names
['item_recency']
>>> item_inputs.schema["embeddings"].column_names
['item_id', 'item_category', 'item_genres']
Parameters

tags (str or Tags or List[Union[str, Tags]]) – List of tags that describe which blocks to match

Return type

ParallelBlock

property first: merlin.models.tf.core.base.Block#
add_branch(name: str, block: merlin.models.tf.core.base.Block) merlin.models.tf.core.combinators.ParallelBlock[source]#
apply_to_branch(branch_name: str, *block: merlin.models.tf.core.base.Block)[source]#
call(inputs, **kwargs)[source]#

The call method for ParallelBlock

Parameters

inputs (TabularData) – The inputs for the Parallel Block

Returns

Outputs of the ParallelBlock

Return type

TabularData

compute_call_output_shape(input_shape)[source]#
build(input_shape)[source]#
get_config()[source]#
classmethod parse_config(config, custom_objects=None)[source]#
classmethod from_config(config, custom_objects=None)[source]#