Source code for nvtabular.ops.fill

#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import dask.dataframe as dd

from merlin.core.dispatch import DataFrameType, annotate
from merlin.dag.ops.stat_operator import StatOperator
from nvtabular.ops.operator import ColumnSelector, Operator


[docs]class FillMissing(Operator): """ This operation replaces missing values with a constant pre-defined value Example usage:: # Use FillMissing to define a workflow for continuous columns and specify the fill value # Default is 0 cont_features = ['cont1', 'cont2', 'cont3'] >> ops.FillMissing() >> ... processor = nvtabular.Workflow(cont_features) Parameters ----------- fill_val : float, default 0 The constant value to replace missing values with. add_binary_cols : boolean, default False When True, adds binary columns that indicate whether cells in each column were filled """
[docs] def __init__(self, fill_val=0, add_binary_cols=False): super().__init__() self.fill_val = fill_val self.add_binary_cols = add_binary_cols self._inference_transform = None
[docs] @annotate("FillMissing_op", color="darkgreen", domain="nvt_python") def transform(self, col_selector: ColumnSelector, df: DataFrameType) -> DataFrameType: if self.add_binary_cols: for col in col_selector.names: df[f"{col}_filled"] = df[col].isna() df[col] = df[col].fillna(self.fill_val) else: df[col_selector.names] = df[col_selector.names].fillna(self.fill_val) return df
[docs] def inference_initialize(self, col_selector, inference_config): """load up extra configuration about this op.""" if self.add_binary_cols: return None import nvtabular_cpp return nvtabular_cpp.inference.FillTransform(self)
[docs] def column_mapping(self, col_selector): column_mapping = super().column_mapping(col_selector) for col_name in col_selector.names: if self.add_binary_cols: column_mapping[f"{col_name}_filled"] = [col_name] return column_mapping
def _compute_dtype(self, col_schema, input_schema): col_schema = super()._compute_dtype(col_schema, input_schema) if col_schema.name.endswith("_filled"): col_schema = col_schema.with_dtype(bool) return col_schema transform.__doc__ = Operator.transform.__doc__
[docs]class FillMedian(StatOperator): """ This operation replaces missing values with the median value for the column. Example usage:: # Use FillMedian in a workflow for continuous columns cont_features = ['cont1', 'cont2', 'cont3'] >> ops.FillMedian() processor = nvtabular.Workflow(cont_features) Parameters ----------- add_binary_cols : boolean, default False When True, adds binary columns that indicate whether cells in each column were filled """
[docs] def __init__(self, add_binary_cols=False): super().__init__() self.add_binary_cols = add_binary_cols self.medians = {}
[docs] @annotate("FillMedian_transform", color="darkgreen", domain="nvt_python") def transform(self, col_selector: ColumnSelector, df: DataFrameType) -> DataFrameType: if not self.medians: raise RuntimeError("need to call 'fit' before running transform") for col in col_selector.names: if self.add_binary_cols: df[f"{col}_filled"] = df[col].isna() df[col] = df[col].fillna(self.medians[col]) return df
[docs] @annotate("FillMedian_fit", color="green", domain="nvt_python") def fit(self, col_selector: ColumnSelector, ddf: dd.DataFrame): # TODO: Use `method="tidigest"` when crick supports device dask_stats = ddf[col_selector.names].quantile(q=0.5, method="dask") return dask_stats
[docs] @annotate("FillMedian_finalize", color="green", domain="nvt_python") def fit_finalize(self, dask_stats): index = dask_stats.index vals = index.values_host if hasattr(index, "values_host") else index.values for col in vals: self.medians[col] = float(dask_stats[col])
transform.__doc__ = Operator.transform.__doc__ fit.__doc__ = StatOperator.fit.__doc__ fit_finalize.__doc__ = StatOperator.fit_finalize.__doc__
[docs] def clear(self): self.medians = {}
[docs] def column_mapping(self, col_selector): column_mapping = super().column_mapping(col_selector) for col_name in col_selector.names: if self.add_binary_cols: column_mapping[f"{col_name}_filled"] = [col_name] return column_mapping
def _compute_dtype(self, col_schema, input_schema): col_schema = super()._compute_dtype(col_schema, input_schema) if col_schema.name.endswith("_filled"): col_schema = col_schema.with_dtype(bool) return col_schema