DifferenceLag
-
class
nvtabular.ops.
DifferenceLag
(partition_cols, shift=1)[source] Bases:
nvtabular.ops.operator.Operator
Calculates the difference between two consecutive rows of the dataset. For instance, this operator can calculate the time since a user last had another interaction.
This requires a dataset partitioned by one set of columns (userid) and sorted further by another set (userid, timestamp). The dataset must already be partitioned and sorted before being passed to the workflow. This can be easily done using dask-cudf:
# get a nvt dataset and convert to a dask dataframe ddf = nvtabular.Dataset(PATHS).to_ddf() # partition the dask dataframe by userid, then sort by userid/timestamp ddf = ddf.shuffle("userid").sort_values(["userid", "timestamp"]) # create a new nvtabular dataset on the partitioned/sorted values dataset = nvtabular.Dataset(ddf)
Once passed an appropriate dataset, this operator can be used to create a workflow to compute the lagged difference within a partition:
# compute the delta in timestamp for each users session diff_features = ["quantity"] >> ops.DifferenceLag(partition_cols=["userid"], shift=[1, -1]) processor = nvtabular.Workflow(diff_features)
- Parameters
-
transform
(col_selector: nvtabular.columns.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame
-
output_column_names
(col_selector: nvtabular.columns.selector.ColumnSelector) → nvtabular.columns.selector.ColumnSelector[source]