FillMissing
-
class
nvtabular.ops.
FillMissing
(fill_val=0, add_binary_cols=False)[source] Bases:
nvtabular.ops.operator.Operator
This operation replaces missing values with a constant pre-defined value
Example usage:
# Use FillMissing to define a workflow for continuous columns and specify the fill value # Default is 0 cont_features = ['cont1', 'cont2', 'cont3'] >> ops.FillMissing() >> ... processor = nvtabular.Workflow(cont_features)
- Parameters
fill_val (float, default 0) – The constant value to replace missing values with.
add_binary_cols (boolean, default False) – When True, adds binary columns that indicate whether cells in each column were filled
-
transform
(col_selector: nvtabular.columns.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame
-
inference_initialize
(col_selector, inference_config)[source] load up extra configuration about this op.
-
compute_output_schema
(input_schema: nvtabular.columns.schema.Schema, col_selector: nvtabular.columns.selector.ColumnSelector) → nvtabular.columns.schema.Schema[source]
-
output_column_names
(col_selector: nvtabular.columns.selector.ColumnSelector) → nvtabular.columns.selector.ColumnSelector[source]