Source code for merlin.models.tf.blocks.sampling.in_batch
#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Optional
import tensorflow as tf
from merlin.models.tf.blocks.sampling.base import EmbeddingWithMetadata, ItemSampler
from merlin.models.tf.typing import TabularData
[docs]@tf.keras.utils.register_keras_serializable(package="merlin.models")
class InBatchSampler(ItemSampler):
"""Provides in-batch sampling [1]_ for two-tower item retrieval
models. The implementation is very simple, as it
just returns the current item embeddings and metadata, but it is necessary to have
`InBatchSampler` under the same interface of other more advanced samplers
(e.g. `CachedCrossBatchSampler`).
In a nutshell, for a given (user,item) embeddings pair, the other in-batch item
embeddings are used as negative items, rather than computing different embeddings
exclusively for negative items.
This is a popularity-biased sampling as popular items are observed more often
in training batches.
P.s. Ignoring the false negatives (negative items equal to the positive ones) is
managed by `ItemRetrievalScorer(..., sampling_downscore_false_negatives=True)`
References
----------
.. [1] Yi, Xinyang, et al. "Sampling-bias-corrected neural modeling for large corpus item
recommendations." Proceedings of the 13th ACM Conference on Recommender Systems. 2019.
Parameters
----------
batch_size : int, optional
The batch size. If not set it is inferred when the layer is built (first call())
"""
[docs] def __init__(self, batch_size: Optional[int] = None, **kwargs):
super().__init__(max_num_samples=batch_size, **kwargs)
self._last_batch_items_embeddings: tf.Tensor = None # type: ignore
self._last_batch_items_metadata: TabularData = {}
self.set_batch_size(batch_size)
@property
def batch_size(self) -> int:
return self._batch_size
[docs] def set_batch_size(self, value):
self._batch_size = value
if value is not None:
self.set_max_num_samples(value)
[docs] def build(self, input_shapes: TabularData) -> None:
if self._batch_size is None:
self.set_batch_size(input_shapes["embeddings"][0])
[docs] def call(self, inputs: TabularData, training=True) -> EmbeddingWithMetadata:
"""Returns the item embeddings and item metadata from
the current batch.
The implementation is very simple, as it just returns the current
item embeddings and metadata, but it is necessary to have
`InBatchSampler` under the same interface of other more advanced samplers
(e.g. `CachedCrossBatchSampler`).
Parameters
----------
inputs : TabularData
Dict with two keys:
"items_embeddings": Items embeddings tensor
"items_metadata": Dict like `{"<feature name>": "<feature tensor>"}` which contains
features that might be relevant for the sampler.
The `InBatchSampler` does not use metadata features
specifically, but "item_id" is required when using in combination with
`ItemRetrievalScorer(..., sampling_downscore_false_negatives=True)`, so that
false negatives are identified and downscored.
training : bool, optional
Flag indicating if on training mode, by default True
Returns
-------
EmbeddingWithMetadata
Value object with the sampled item embeddings and item metadata
"""
self.add(inputs, training)
items_embeddings = self.sample()
return items_embeddings
[docs] def add(self, inputs: TabularData, training=True) -> None: # type: ignore
self._check_inputs_batch_sizes(inputs)
self._last_batch_items_embeddings = inputs["embeddings"]
self._last_batch_items_metadata = inputs["metadata"]
[docs] def sample(self) -> EmbeddingWithMetadata:
return EmbeddingWithMetadata(
self._last_batch_items_embeddings, self._last_batch_items_metadata
)
[docs] def get_config(self):
config = super(InBatchSampler, self).get_config()
config["batch_size"] = self.batch_size
return config