Source code for merlin.models.tf.transforms.regularization

#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union

import tensorflow as tf

from merlin.models.tf.core.base import Block
from merlin.models.tf.core.combinators import TabularBlock
from merlin.models.tf.typing import TabularData


[docs]@Block.registry.register_with_multiple_names("l2-norm") @tf.keras.utils.register_keras_serializable(package="merlin.models") class L2Norm(TabularBlock): """Apply L2-normalization to input tensors along a given axis"""
[docs] def __init__(self, **kwargs): super(L2Norm, self).__init__(**kwargs)
[docs] def call(self, inputs: Union[tf.Tensor, TabularData], axis: int = -1, **kwargs): """ Invokes the L2 normalization on the input tensor or dictionary of tensors. Parameters ---------- inputs: Union[tf.Tensor, TabularData] A Tensor or TabularData input to normalize. axis: int, optional The axis on which to normalize, by default -1. Returns ------- Union[tf.Tensor, TabularData] The L2-normalized tensor or dictionary of tensors. """ if isinstance(inputs, dict): inputs = {key: self._l2_norm(inp, axis=axis) for key, inp in inputs.items()} else: inputs = self._l2_norm(inputs, axis=axis) return inputs
def _l2_norm( self, inputs: Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor], epsilon: float = 1e-12, axis: int = -1, ) -> Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor]: """Computes L2-norm for a given axis, typically axis = -1. Equivalent to tf.linalg.l2_normalize(), but that function does not support tf.RaggedTensor Parameters ---------- inputs : Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor] A dense or sparse/ragged tensor epsilon : float, optional A small value to add to the sum(vector**2) to avoid div by 0, by default 1e-12 axis : int, optional The axis on which to normalize, by default -1 Returns ------- Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor] The L2 normalized tensor """ return inputs / tf.math.sqrt( tf.math.maximum(tf.reduce_sum(tf.pow(inputs, 2), axis=axis, keepdims=True), epsilon) )
[docs] def compute_output_shape(self, input_shape): """ Compute the output shape of the tensor after normalization. Parameters ---------- input_shape : tuple A tuple indicating the shape of the input tensor. Returns ------- tuple The shape of the tensor after L2 normalization. """ return input_shape