Source code for merlin.models.tf.transforms.regularization
#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union
import tensorflow as tf
from merlin.models.tf.core.base import Block
from merlin.models.tf.core.combinators import TabularBlock
from merlin.models.tf.typing import TabularData
[docs]@Block.registry.register_with_multiple_names("l2-norm")
@tf.keras.utils.register_keras_serializable(package="merlin.models")
class L2Norm(TabularBlock):
"""Apply L2-normalization to input tensors along a given axis"""
[docs] def __init__(self, **kwargs):
super(L2Norm, self).__init__(**kwargs)
[docs] def call(self, inputs: Union[tf.Tensor, TabularData], axis: int = -1, **kwargs):
"""
Invokes the L2 normalization on the input tensor or dictionary of tensors.
Parameters
----------
inputs: Union[tf.Tensor, TabularData]
A Tensor or TabularData input to normalize.
axis: int, optional
The axis on which to normalize, by default -1.
Returns
-------
Union[tf.Tensor, TabularData]
The L2-normalized tensor or dictionary of tensors.
"""
if isinstance(inputs, dict):
inputs = {key: self._l2_norm(inp, axis=axis) for key, inp in inputs.items()}
else:
inputs = self._l2_norm(inputs, axis=axis)
return inputs
def _l2_norm(
self,
inputs: Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor],
epsilon: float = 1e-12,
axis: int = -1,
) -> Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor]:
"""Computes L2-norm for a given axis, typically axis = -1.
Equivalent to tf.linalg.l2_normalize(), but that function
does not support tf.RaggedTensor
Parameters
----------
inputs : Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor]
A dense or sparse/ragged tensor
epsilon : float, optional
A small value to add to the sum(vector**2) to avoid div by 0, by default 1e-12
axis : int, optional
The axis on which to normalize, by default -1
Returns
-------
Union[tf.Tensor, tf.SparseTensor, tf.RaggedTensor]
The L2 normalized tensor
"""
return inputs / tf.math.sqrt(
tf.math.maximum(tf.reduce_sum(tf.pow(inputs, 2), axis=axis, keepdims=True), epsilon)
)
[docs] def compute_output_shape(self, input_shape):
"""
Compute the output shape of the tensor after normalization.
Parameters
----------
input_shape : tuple
A tuple indicating the shape of the input tensor.
Returns
-------
tuple
The shape of the tensor after L2 normalization.
"""
return input_shape