Source code for merlin.models.tf.outputs.contrastive

#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import warnings
from typing import List, Optional, Protocol, Tuple, Union, runtime_checkable

import tensorflow as tf
from tensorflow.keras.layers import Layer

import merlin.io
from merlin.models.tf.core.prediction import Prediction
from merlin.models.tf.inputs.embedding import EmbeddingTable
from merlin.models.tf.outputs.base import DotProduct, MetricsFn, ModelOutput
from merlin.models.tf.outputs.classification import (
    CategoricalTarget,
    EmbeddingTablePrediction,
    default_categorical_prediction_metrics,
)
from merlin.models.tf.outputs.sampling.base import (
    Candidate,
    ItemSamplersType,
    parse_negative_samplers,
)
from merlin.models.tf.typing import TabularData
from merlin.models.tf.utils import tf_utils
from merlin.models.utils import schema_utils
from merlin.models.utils.constants import MIN_FLOAT
from merlin.schema import ColumnSchema, Schema

LOG = logging.getLogger("merlin_models")


[docs]@tf.keras.utils.register_keras_serializable(package="merlin.models") class ContrastiveOutput(ModelOutput): """Categorical output Parameters ---------- to_call: Union[Schema, ColumnSchema, EmbeddingTable, 'CategoricalTarget', 'EmbeddingTablePrediction', 'DotProduct'] The target feature to predict. To perform weight-tying [1] technique, you should provide the `EmbeddingTable` or `EmbeddingTablePrediction` related to the target feature. negative_samplers: ItemSamplersType List of samplers for negative sampling, by default None pre: Optional[Block], optional Optional block to transform predictions before computing the binary logits, by default None post: Optional[Block], optional Optional block to transform the binary logits, by default None logits_temperature: float, optional Parameter used to reduce model overconfidence, so that logits / T. by default 1 name: str, optional The name of the task, by default None default_loss: Union[str, tf.keras.losses.Loss], optional Default loss to use for categorical-classification by default 'categorical_crossentropy' get_default_metrics: Callable, optional A function returning the list of default metrics to use for categorical-classification store_negative_ids: bool, optional Whether to store negative ids for post-processing by default False logq_sampling_correction: bool, optional The LogQ correction is a standard technique for sampled softmax and popularity-biased sampling. It subtracts from the logits the log expected count/prob of the positive and negative samples in order to not overpenalize the popular items for being sampled more often as negatives. It can be enabled if a single negative sampler is provided and if it provides the sampler provides the sampling probabilities (i.e. implements with_sampling_probs()). Another alternative for performing logQ correction is using ContrastiveOutput(..., post=PopularityLogitsCorrection(item_frequencies)), where you need to provide the items frequency probability distribution (prior). Default is False. References: ---------- [1] Hakan Inan, Khashayar Khosravi, and Richard Socher. 2016. Tying word vectors and word classifiers: A loss framework for language modeling. arXiv preprint arXiv:1611.01462 (2016). Notes: ---------- In case `to_call` is set as `DotProduct()`, schema of target couldn't be inferred therefore, the user should feed a schema only with ITEM_ID feature as schema arg, which is treated as a `kwargs` arg below. Example usage:: outputs=mm.ContrastiveOutput( to_call=DotProduct(), negative_samplers="in-batch", schema=schema.select_by_tag(Tags.ITEM_ID), logits_temperature = 0.2, ) The schema arg is not needed when we pass the schema to `to_call` arg. Example usage:: outputs=mm.ContrastiveOutput( to_call=schema.select_by_tag(Tags.ITEM_ID), negative_samplers="in-batch", logits_temperature = 0.2, ) """
[docs] def __init__( self, to_call: Union[ Schema, ColumnSchema, EmbeddingTable, CategoricalTarget, EmbeddingTablePrediction, DotProduct, ], negative_samplers: ItemSamplersType, target_name: str = None, pre: Optional[Layer] = None, post: Optional[Layer] = None, logits_temperature: float = 1.0, name: Optional[str] = None, default_loss: Union[str, tf.keras.losses.Loss] = "categorical_crossentropy", default_metrics_fn: MetricsFn = default_categorical_prediction_metrics, downscore_false_negatives=True, false_negative_score: float = MIN_FLOAT, query_name: str = "query", candidate_name: str = "candidate", store_negative_ids: bool = False, logq_sampling_correction: Optional[bool] = False, **kwargs, ): self.col_schema = None _to_call = None if to_call is not None: if isinstance(to_call, (Schema, ColumnSchema)): if isinstance(to_call, Schema): if len(to_call) == 1: to_call = to_call.first else: raise ValueError("to_call must be a single column schema") self.col_schema = to_call _to_call = CategoricalTarget(to_call) target_name = target_name or to_call.name elif isinstance(to_call, EmbeddingTable): _to_call = EmbeddingTablePrediction(to_call) target_name = _to_call.table.col_schema.name self.col_schema = _to_call.table.col_schema else: _to_call = to_call if "schema" in kwargs: self.col_schema = kwargs.pop("schema").first if not self.col_schema: raise ValueError( "schema of target couldn't be inferred, please provide ", "`schema=...`" ) self.negative_samplers = parse_negative_samplers(negative_samplers) self.downscore_false_negatives = downscore_false_negatives self.false_negative_score = false_negative_score self.query_name = query_name self.candidate_name = candidate_name self.store_negative_ids = store_negative_ids self.logq_sampling_correction = logq_sampling_correction self.target_name = kwargs.pop("target", target_name) super().__init__( to_call=_to_call, default_loss=default_loss, default_metrics_fn=default_metrics_fn, name=name, target=self.target_name, pre=pre, post=post, logits_temperature=logits_temperature, **kwargs, )
[docs] def build(self, input_shape): if ( isinstance(input_shape, dict) and all(key in input_shape for key in self.keys) and not isinstance(self.to_call, DotProduct) ): self.to_call = DotProduct(*self.keys) super().build(input_shape)
[docs] def call(self, inputs, features=None, targets=None, training=False, testing=False): call_kwargs = dict(features=features, targets=targets, training=training, testing=testing) if training or testing: if self.has_candidate_weights and targets is None: return tf_utils.call_layer(self.to_call, inputs, **call_kwargs) return self.call_contrastive(inputs, **call_kwargs) return tf_utils.call_layer(self.to_call, inputs, **call_kwargs)
[docs] def call_contrastive(self, inputs, features, targets, training=False, testing=False): if isinstance(inputs, dict) and self.query_name in inputs: query_embedding = inputs[self.query_name] elif isinstance(inputs, tf.Tensor): query_embedding = inputs else: raise ValueError("Couldn't infer query embedding") if self.has_candidate_weights: positive_id = targets if isinstance(targets, dict): positive_id = targets[self.col_schema.name] positive_embedding = self.embedding_lookup(positive_id) else: positive_id = features[self.col_schema.name] positive_embedding = inputs[self.candidate_name] positive = Candidate(id=positive_id, metadata={**features}).with_embedding( positive_embedding ) negative, positive = self.sample_negatives( positive, features, training=training, testing=testing ) if self.has_candidate_weights and ( positive.id.shape != negative.id.shape or positive != negative ): negative = negative.with_embedding(self.embedding_lookup(negative.id)) return self.outputs(query_embedding, positive, negative)
[docs] def outputs( self, query_embedding: tf.Tensor, positive: Candidate, negative: Candidate ) -> Prediction: """Method to compute the dot product between the query embeddings and positive/negative candidates Parameters ---------- query_embedding : tf.Tensor tensor of query embeddings. positive : Candidate Store the ids and metadata (such as embeddings) of the positive candidates. negative : Candidate Store the ids and metadata (such as embeddings) of the sampled negative candidates. Returns ------- Prediction a Prediction object with the prediction scores, the targets and the negative candidates ids if specified. """ if not positive.has_embedding: raise ValueError("Positive candidate must have an embedding") if not negative.has_embedding: raise ValueError("Negative candidate must have an embedding") # Apply dot-product negative_scores = tf.linalg.matmul(query_embedding, negative.embedding, transpose_b=True) positive_scores = tf.reduce_sum( tf.multiply(query_embedding, positive.embedding), keepdims=True, axis=-1 ) if self.logq_sampling_correction: if positive.sampling_prob is None or negative.sampling_prob is None: warnings.warn( "The logQ sampling correction is enabled, but sampling probs were not found " "for both positive and negative candidates", RuntimeWarning, ) epsilon = 1e-16 positive_scores -= tf.math.log(positive.sampling_prob + epsilon) negative_scores -= tf.math.log(tf.transpose(negative.sampling_prob + epsilon)) if self.downscore_false_negatives: negative_scores, _ = tf_utils.rescore_false_negatives( positive.id, negative.id, negative_scores, self.false_negative_score ) outputs = tf.concat([positive_scores, negative_scores], axis=-1) # To ensure that the output is always fp32, avoiding numerical # instabilities with mixed_float16 policy outputs = tf.cast(outputs, tf.float32) targets = tf.concat( [ tf.ones([tf.shape(outputs)[0], 1], dtype=outputs.dtype), tf.zeros( [tf.shape(outputs)[0], tf.shape(outputs)[1] - 1], dtype=outputs.dtype, ), ], axis=1, ) if self.store_negative_ids: return Prediction(outputs, targets, negative_candidate_ids=negative.id) return Prediction(outputs, targets)
[docs] def sample_negatives( self, positive: Candidate, features: TabularData, training=False, testing=False, ) -> Tuple[Candidate, Candidate]: """Method to sample negatives from `self.negative_samplers` Parameters ---------- positive_items : Items Positive items (ids and metadata) features : TabularData Dictionary of input raw tensors training : bool, optional Flag for train mode, by default False testing : bool, optional Flag for test mode, by default False Returns ------- Tuple[Candidate, Candidate] Tuple of candidates with sampled negative ids and the provided positive ids added with the sampling probability """ sampling_kwargs = {"training": training, "testing": testing, "features": features} candidates: List[Candidate] = [] if self.logq_sampling_correction and len(self.negative_samplers) > 1: raise ValueError( "It is only possible to apply logQ sampling correction " "(logq_sampling_correction=True) when only one negative sampler is provided." ) for sampler in self.negative_samplers: neg_samples: Candidate = tf_utils.call_layer(sampler, positive, **sampling_kwargs) # Adds to the positive and negative candidates their sampling probs from the sampler positive = sampler.with_sampling_probs(positive) neg_samples = sampler.with_sampling_probs(neg_samples) if neg_samples.id is not None: candidates.append(neg_samples) else: LOG.warn( f"The sampler {type(sampler).__name__} returned no samples for this batch." ) if len(candidates) == 0: raise Exception( f"No negative items where sampled from samplers {self.negative_samplers}" ) negatives = candidates[0] if len(candidates) > 1: for neg in candidates[1:]: negatives += neg return negatives, positive
[docs] def embedding_lookup(self, ids: tf.Tensor): return self.to_call.embedding_lookup(tf.squeeze(ids))
[docs] def to_dataset(self, gpu=None) -> merlin.io.Dataset: return merlin.io.Dataset(tf_utils.tensor_to_df(self.to_call.embeddings, gpu=gpu))
@property def has_candidate_weights(self) -> bool: if isinstance(self.to_call, DotProduct): return False return isinstance(self.to_call, LookUpProtocol) @property def keys(self) -> List[str]: return [self.query_name, self.candidate_name]
[docs] def set_negative_samplers(self, negative_samplers: ItemSamplersType): if negative_samplers is not None: negative_samplers = parse_negative_samplers(negative_samplers) self.negative_samplers = negative_samplers
[docs] def get_config(self): config = super().get_config() config = tf_utils.maybe_serialize_keras_objects(self, config, ["negative_samplers"]) config["target"] = self.target_name config["downscore_false_negatives"] = self.downscore_false_negatives config["false_negative_score"] = self.false_negative_score config["query_name"] = self.query_name config["candidate_name"] = self.candidate_name config["store_negative_ids"] = self.store_negative_ids config["schema"] = schema_utils.schema_to_tensorflow_metadata_json( Schema([self.col_schema]) ) return config
[docs] @classmethod def from_config(cls, config): config["schema"] = schema_utils.tensorflow_metadata_json_to_schema(config["schema"]) config = tf_utils.maybe_deserialize_keras_objects(config, ["negative_samplers"]) return super().from_config(config)
@runtime_checkable class LookUpProtocol(Protocol): """Protocol for embedding lookup layers""" @property def embeddings(self): pass def embedding_lookup(self, inputs, **kwargs): pass def __call__(self, *args, **kwargs): pass