merlin.models.tf.TwoTowerBlock
-
class
merlin.models.tf.TwoTowerBlock(*args, **kwargs)[source] Bases:
merlin.models.tf.blocks.retrieval.base.DualEncoderBlock,merlin.models.tf.blocks.retrieval.base.RetrievalMixinBuilds the Two-tower architecture, as proposed in the following `paper https://doi.org/10.1145/3298689.3346996`_ [Xinyang19].
- Parameters
schema (Schema) – The Schema with the input features
query_tower (Block) – The Block that combines user features
item_tower (Optional[Block], optional) – The optional Block that combines items features. If not provided, a copy of the query_tower is used.
query_tower_tag (Tag) – The tag to select query features, by default Tags.USER
item_tower_tag (Tag) – The tag to select item features, by default Tags.ITEM
embedding_options (EmbeddingOptions) – Options for the input embeddings. - embedding_dims: Optional[Dict[str, int]] - The dimension of the embedding table for each feature (key), by default None - embedding_dim_default: int - Default dimension of the embedding table, when the feature is not found in
embedding_dims, by default 64 - infer_embedding_sizes : bool, Automatically defines the embedding dimension from the feature cardinality in the schema, by default False - infer_embedding_sizes_multiplier: int. Multiplier used by the heuristic to infer the embedding dimension from its cardinality. Generally reasonable values range between 2.0 and 10.0. By default 2.0.post (Optional[Block], optional) – The optional Block to apply on both outputs of Two-tower model
- Returns
The Two-tower block
- Return type
- Raises
ValueError – The schema is required by TwoTower
ValueError – The query_tower is required by TwoTower
-
__init__(schema: merlin.schema.schema.Schema, query_tower: merlin.models.tf.core.base.Block, item_tower: Optional[merlin.models.tf.core.base.Block] = None, query_tower_tag=<Tags.USER: 'user'>, item_tower_tag=<Tags.ITEM: 'item'>, embedding_options: merlin.models.tf.inputs.embedding.EmbeddingOptions = EmbeddingOptions(embedding_dims=None, embedding_dim_default=64, infer_embedding_sizes=False, infer_embedding_sizes_multiplier=2.0, infer_embeddings_ensure_dim_multiple_of_8=False, embeddings_initializers=None, embeddings_l2_reg=0.0, combiner='mean'), post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, **kwargs)[source]
Methods
__init__(schema, query_tower[, item_tower, …])add_branch(name, block)add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
apply_to_all(inputs[, columns_to_filter])apply_to_branch(branch_name, *block)as_tabular([name])build(input_shape)build_from_config(config)calculate_batch_size_from_input_shapes(…)call(inputs, **kwargs)The call method for ParallelBlock
call_outputs(outputs[, training])check_schema([schema])compute_call_output_shape(input_shape)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shapes)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config[, custom_objects])from_features(features[, pre, post, …])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer(layer)from_schema(schema[, tags, allow_none])Instantiate a TabularLayer instance from a DatasetSchema.
get_build_config()get_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_weights()Returns the current weights of the layer, as NumPy arrays.
item_block()parse(*block)parse_block(input)parse_config(config[, custom_objects])post_call(inputs[, transformations, …])Method that’s typically called after the forward method for post-processing.
pre_call(inputs[, transformations])Method that’s typically called before the forward method for pre-processing.
prepare([block, post, aggregation])Transform the inputs of this block.
query_block()register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
repr_add()repr_extra()repr_ignore()select_by_name(name)Select a parallel block by name
select_by_names(names)Select a list of parallel blocks by names
select_by_tag(tags)Select layers of parallel blocks by tags.
set_aggregation(value)- param value
set_post(value)set_pre(value)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
super()with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMAactivity_regularizerOptional regularizer function for the output of this layer.
aggregationreturns: :rtype: TabularAggregation, optional
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
firsthas_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
is_inputis_tabularlayerslossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
parallel_dictparallel_valuespostreturns: :rtype: SequentialTabularTransformations, optional
prereturns: :rtype: SequentialTabularTransformations, optional
registryschemastatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
parallel_layers: Union[List[TabularBlock], Dict[str, TabularBlock]]