Source code for merlin.models.tf.blocks.retrieval.two_tower
#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from typing import Optional
import tensorflow as tf
from merlin.models.tf.blocks.retrieval.base import DualEncoderBlock, RetrievalMixin
from merlin.models.tf.core.base import Block, BlockType
from merlin.models.tf.inputs.base import InputBlock
from merlin.models.tf.inputs.embedding import EmbeddingOptions
from merlin.schema import Schema, Tags
LOG = logging.getLogger("merlin_models")
[docs]@tf.keras.utils.register_keras_serializable(package="merlin_models")
class TwoTowerBlock(DualEncoderBlock, RetrievalMixin):
"""
Builds the Two-tower architecture, as proposed in the following
`paper https://doi.org/10.1145/3298689.3346996`_ [Xinyang19].
Parameters
----------
schema : Schema
The `Schema` with the input features
query_tower : Block
The `Block` that combines user features
item_tower : Optional[Block], optional
The optional `Block` that combines items features.
If not provided, a copy of the query_tower is used.
query_tower_tag : Tag
The tag to select query features, by default `Tags.USER`
item_tower_tag : Tag
The tag to select item features, by default `Tags.ITEM`
embedding_options : EmbeddingOptions
Options for the input embeddings.
- embedding_dims: Optional[Dict[str, int]] - The dimension of the
embedding table for each feature (key), by default None
- embedding_dim_default: int - Default dimension of the embedding
table, when the feature is not found in ``embedding_dims``, by default 64
- infer_embedding_sizes : bool, Automatically defines the embedding
dimension from the feature cardinality in the schema, by default False
- infer_embedding_sizes_multiplier: int. Multiplier used by the heuristic
to infer the embedding dimension from its cardinality. Generally
reasonable values range between 2.0 and 10.0. By default 2.0.
post: Optional[Block], optional
The optional `Block` to apply on both outputs of Two-tower model
Returns
-------
ParallelBlock
The Two-tower block
Raises
------
ValueError
The schema is required by TwoTower
ValueError
The query_tower is required by TwoTower
"""
[docs] def __init__(
self,
schema: Schema,
query_tower: Block,
item_tower: Optional[Block] = None,
query_tower_tag=Tags.USER,
item_tower_tag=Tags.ITEM,
embedding_options: EmbeddingOptions = EmbeddingOptions(
embedding_dims=None,
embedding_dim_default=64,
infer_embedding_sizes=False,
infer_embedding_sizes_multiplier=2.0,
),
post: Optional[BlockType] = None,
**kwargs,
):
if schema is None:
raise ValueError("The schema is required by TwoTower")
if query_tower is None:
raise ValueError("The query_tower is required by TwoTower")
_item_tower: Block = item_tower or query_tower.copy()
if not getattr(_item_tower, "inputs", None):
item_schema = schema.select_by_tag(item_tower_tag) if item_tower_tag else schema
if not item_schema:
raise ValueError(
f"The schema should contain features with the tag `{item_tower_tag}`,"
"required by item-tower"
)
item_tower_inputs = InputBlock(item_schema, embedding_options=embedding_options)
_item_tower = item_tower_inputs.connect(_item_tower)
if not getattr(query_tower, "inputs", None):
query_schema = schema.select_by_tag(query_tower_tag) if query_tower_tag else schema
if not query_schema:
raise ValueError(
f"The schema should contain features with the tag `{query_schema}`,"
"required by query-tower"
)
query_inputs = InputBlock(query_schema, embedding_options=embedding_options)
query_tower = query_inputs.connect(query_tower)
super().__init__(query_tower, _item_tower, post=post, **kwargs)