merlin.systems.dag.ops.workflow.TransformWorkflow
- 
class merlin.systems.dag.ops.workflow.TransformWorkflow(workflow=None, sparse_max: Optional[dict] = None, max_batch_size: Optional[int] = None, label_columns: Optional[List[str]] = None, model_framework: Optional[str] = None, cats: Optional[List[str]] = None, conts: Optional[List[str]] = None, backend: str = 'workflow')[source]
- Bases: - merlin.systems.dag.ops.operator.PipelineableInferenceOperator- This operator takes a workflow and turns it into a ensemble operator so that we can execute feature engineering during ensemble on tritonserver. - 
__init__(workflow=None, sparse_max: Optional[dict] = None, max_batch_size: Optional[int] = None, label_columns: Optional[List[str]] = None, model_framework: Optional[str] = None, cats: Optional[List[str]] = None, conts: Optional[List[str]] = None, backend: str = 'workflow')[source]
- Creates a Transform Workflow operator for a target workflow. - Parameters
- workflow (Nvtabular.Workflow) – The workflow to transform data in ensemble. 
- sparse_max (dict, optional) – Dictionary representing key(name)/val(max value) pairs of max sparsity, by default None 
- max_batch_size (int, optional) – Maximum batch size, by default None 
- label_columns (List[str], optional) – List of strings identifying the label columns, by default None 
- model_framework (str, optional) – String representing the target framework (supported: hugectr, tensorflow, pytorch, python), by default None 
- cats (List[str], optional) – List of strings identifying categorical columns, by default None 
- conts (List[str], optional) – List of string identifying continuous columns, by default None 
 
 
 - Methods - __init__([workflow, sparse_max, …])- Creates a Transform Workflow operator for a target workflow. - column_mapping(col_selector)- Compute which output columns depend on which input columns - compute_column_schema(col_name, input_schema)- compute_input_schema(root_schema, …)- Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use - compute_output_schema(input_schema, col_selector)- Returns output schema of operator - compute_selector(input_schema, selector[, …])- Provides a hook method for sub-classes to override to implement custom column selection logic. - create_node(selector)- _summary_ - export(path, input_schema, output_schema[, …])- Create a directory inside supplied path based on our export name - from_config(config, **kwargs)- Instantiate the class from a dictionary representation. - from_model_registry(registry, **kwargs)- Loads the InferenceOperator from the provided ModelRegistry. - from_path(path, **kwargs)- Loads the InferenceOperator from the path where it was exported after training. - load_artifacts(artifact_path)- Hook method that provides a way to load saved artifacts for the operator - output_column_names(col_selector)- Given a set of columns names returns the names of the transformed columns this operator will produce - set_nvt_model_name(nvt_model_name)- transform(col_selector, transformable)- validate_schemas(parents_schema, …[, …])- Provides a hook method that sub-classes can override to implement schema validation logic. - Attributes - dependencies- Defines an optional list of column dependencies for this operator. - dynamic_dtypes- Provides a clear common english identifier for this operator. - exportable_backends- is_subgraph- label- output_dtype- output_properties- output_tags- scalar_shape- supported_formats- supports- Returns what kind of data representation this operator supports - 
transform(col_selector: merlin.dag.selector.ColumnSelector, transformable: merlin.core.protocols.Transformable)[source]
 - 
classmethod from_config(config: dict, **kwargs) → merlin.systems.dag.ops.workflow.TransformWorkflow[source]
- Instantiate the class from a dictionary representation. - Expected structure: { - “input_dict”: str # JSON dict with input names and schemas “params”: str # JSON dict with params saved at export - } 
 - 
property nvt_model_name
 - 
compute_output_schema(input_schema: merlin.schema.schema.Schema, col_selector: merlin.dag.selector.ColumnSelector, prev_output_schema: Optional[merlin.schema.schema.Schema] = None) → merlin.schema.schema.Schema[source]
- Returns output schema of operator 
 - 
export(path: str, input_schema: merlin.schema.schema.Schema, output_schema: merlin.schema.schema.Schema, params: Optional[dict] = None, node_id: Optional[int] = None, version: int = 1, backend: str = 'ensemble')[source]
- Create a directory inside supplied path based on our export name 
 - 
property export_name
- Provides a clear common english identifier for this operator. - Returns
- Name of the current class as spelled in module. 
- Return type
- String 
 
 
-