merlin.systems.dag.ops.workflow.TransformWorkflow
-
class
merlin.systems.dag.ops.workflow.TransformWorkflow(workflow=None, sparse_max: Optional[dict] = None, max_batch_size: Optional[int] = None, label_columns: Optional[List[str]] = None, model_framework: Optional[str] = None, cats: Optional[List[str]] = None, conts: Optional[List[str]] = None, backend: str = 'workflow')[source] Bases:
merlin.systems.dag.ops.operator.PipelineableInferenceOperatorThis operator takes a workflow and turns it into a ensemble operator so that we can execute feature engineering during ensemble on tritonserver.
-
__init__(workflow=None, sparse_max: Optional[dict] = None, max_batch_size: Optional[int] = None, label_columns: Optional[List[str]] = None, model_framework: Optional[str] = None, cats: Optional[List[str]] = None, conts: Optional[List[str]] = None, backend: str = 'workflow')[source] Creates a Transform Workflow operator for a target workflow.
- Parameters
workflow (Nvtabular.Workflow) – The workflow to transform data in ensemble.
sparse_max (dict, optional) – Dictionary representing key(name)/val(max value) pairs of max sparsity, by default None
max_batch_size (int, optional) – Maximum batch size, by default None
label_columns (List[str], optional) – List of strings identifying the label columns, by default None
model_framework (str, optional) – String representing the target framework (supported: hugectr, tensorflow, pytorch, python), by default None
cats (List[str], optional) – List of strings identifying categorical columns, by default None
conts (List[str], optional) – List of string identifying continuous columns, by default None
Methods
__init__([workflow, sparse_max, …])Creates a Transform Workflow operator for a target workflow.
column_mapping(col_selector)Compute which output columns depend on which input columns
compute_column_schema(col_name, input_schema)compute_input_schema(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema(input_schema, col_selector)Returns output schema of operator
compute_selector(input_schema, selector[, …])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node(selector)_summary_
export(path, input_schema, output_schema[, …])Create a directory inside supplied path based on our export name
from_config(config, **kwargs)Instantiate the class from a dictionary representation.
from_model_registry(registry, **kwargs)Loads the InferenceOperator from the provided ModelRegistry.
from_path(path, **kwargs)Loads the InferenceOperator from the path where it was exported after training.
load_artifacts(artifact_path)Hook method that provides a way to load saved artifacts for the operator
output_column_names(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
set_nvt_model_name(nvt_model_name)transform(col_selector, transformable)validate_schemas(parents_schema, …[, …])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependenciesDefines an optional list of column dependencies for this operator.
dynamic_dtypesProvides a clear common english identifier for this operator.
exportable_backendsis_subgraphlabeloutput_dtypeoutput_propertiesoutput_tagsscalar_shapesupported_formatssupportsReturns what kind of data representation this operator supports
-
transform(col_selector: merlin.dag.selector.ColumnSelector, transformable: merlin.core.protocols.Transformable)[source]
-
classmethod
from_config(config: dict, **kwargs) → merlin.systems.dag.ops.workflow.TransformWorkflow[source] Instantiate the class from a dictionary representation.
Expected structure: {
“input_dict”: str # JSON dict with input names and schemas “params”: str # JSON dict with params saved at export
}
-
property
nvt_model_name
-
compute_output_schema(input_schema: merlin.schema.schema.Schema, col_selector: merlin.dag.selector.ColumnSelector, prev_output_schema: Optional[merlin.schema.schema.Schema] = None) → merlin.schema.schema.Schema[source] Returns output schema of operator
-
export(path: str, input_schema: merlin.schema.schema.Schema, output_schema: merlin.schema.schema.Schema, params: Optional[dict] = None, node_id: Optional[int] = None, version: int = 1, backend: str = 'ensemble')[source] Create a directory inside supplied path based on our export name
-
property
export_name Provides a clear common english identifier for this operator.
- Returns
Name of the current class as spelled in module.
- Return type
String
-