nvtabular.ops.Clip#
- class nvtabular.ops.Clip(min_value=None, max_value=None)[source]#
Bases:
Operator
This operation clips continuous values so that they are within a min/max bound. For instance by setting the min value to 0, you can replace all negative values with 0. This is helpful in cases where you want to log normalize values:
# clip all continuous columns to be positive only, and then take the log of the clipped # columns columns = ColumnSelector(CONT_NAMES) >> Clip(min_value=0) >> LogOp()
- Parameters:
min_value (float, default None) – The minimum value to clip values to: values less than this will be replaced with this value. Specifying
None
means don’t apply a minimum threshold.max_value (float, default None) – The maximum value to clip values to: values greater than this will be replaced with this value. Specifying
None
means don’t apply a maximum threshold.
Methods
__init__
([min_value, max_value])column_mapping
(col_selector)Compute which output columns depend on which input columns
compute_column_schema
(col_name, input_schema)compute_input_schema
(root_schema, ...)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema
(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector
(input_schema, selector[, ...])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node
(selector)export
(path, input_schema, output_schema, ...)Export the class object as a config and all related files to the user defined path.
inference_initialize
(col_selector, model_config)Configures this operator for use in inference.
load_artifacts
([artifact_path])Load artifacts from disk required for operator function.
output_column_names
(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
save_artifacts
([artifact_path])Save artifacts required to be reload operator state from disk
transform
(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
validate_schemas
(parents_schema, ...[, ...])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependencies
Defines an optional list of column dependencies for this operator.
dynamic_dtypes
export_name
Provides a clear common english identifier for this operator.
is_subgraph
label
output_dtype
output_properties
output_tags
supported_formats
supports
Returns what kind of data representation this operator supports
- transform(col_selector: ColumnSelector, df: DataFrame) DataFrame [source]#
Transform the dataframe by applying this operator to the set of input columns