nvtabular.ops.LambdaOp#

class nvtabular.ops.LambdaOp(f, dependency=None, label=None, dtype=None, tags=None, properties=None)[source]#

Bases: Operator

LambdaOp allows you to apply row level functions to an NVTabular workflow.

Example usage 1:

# Define a ColumnSelector that LamdaOp will apply to
# then define a custom function, e.g. extract first 5 character from a string
lambda_feature = ColumnSelector(["col1"])
new_lambda_feature = lambda_feature >> LambdaOp(lambda col: col.str.slice(0, 5))
workflow = nvtabular.Workflow(new_lambda_feature + 'label')

Example usage 2:

# define a custom function e.g. calculate probability for different events.
# Rename the each new feature column name.
lambda_features = ColumnSelector(['event1', 'event2', 'event3']), # columns, f is applied to
def cond_prob(col, gdf):
    col = col.astype(np.float32)
    col = col / gdf['total_events']
    return col
new_lambda_features = lambda_features >> LambdaOp(cond_prob, dependency=["total_events"]) >> Rename(postfix="_cond")
workflow = nvtabular.Workflow(new_lambda_features + 'label')
Parameters:
  • f (callable) – Defines a function that takes a Series and an optional DataFrame as input, and returns a new Series as the output.

  • dependency (list, default None) – Whether to provide a dependency column or not.

__init__(f, dependency=None, label=None, dtype=None, tags=None, properties=None)[source]#

Methods

__init__(f[, dependency, label, dtype, ...])

column_mapping(col_selector)

compute_column_schema(col_name, input_schema)

compute_input_schema(root_schema, ...)

Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use

compute_output_schema(input_schema, col_selector)

Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce

compute_selector(input_schema, selector[, ...])

Provides a hook method for sub-classes to override to implement custom column selection logic.

create_node(selector)

export(path, input_schema, output_schema, ...)

Export the class object as a config and all related files to the user defined path.

inference_initialize(col_selector, model_config)

Configures this operator for use in inference.

load_artifacts([artifact_path])

Load artifacts from disk required for operator function.

output_column_names(col_selector)

Given a set of columns names returns the names of the transformed columns this operator will produce

save_artifacts([artifact_path])

Save artifacts required to be reload operator state from disk

transform(col_selector, df)

Transform the dataframe by applying this operator to the set of input columns

validate_schemas(parents_schema, ...[, ...])

Provides a hook method that sub-classes can override to implement schema validation logic.

Attributes

dependencies

dynamic_dtypes

export_name

Provides a clear common english identifier for this operator.

is_subgraph

label

output_dtype

output_properties

output_tags

supported_formats

supports

Returns what kind of data representation this operator supports

transform(col_selector: ColumnSelector, df: DataFrame) DataFrame[source]#

Transform the dataframe by applying this operator to the set of input columns

Parameters:
  • columns (list of str or list of list of str) – The columns to apply this operator to

  • df (Dataframe) – A pandas or cudf dataframe that this operator will work on

Returns:

Returns a transformed dataframe for this operator

Return type:

DataFrame

property dependencies#
property label#
column_mapping(col_selector)[source]#
property dynamic_dtypes#
property output_dtype#
property output_tags#
property output_properties#