nvtabular.ops.Filter#
- class nvtabular.ops.Filter(f: Callable[[DataFrame], Union[DataFrame, Series]])[source]#
Bases:
Operator
Filters rows from the dataset. This works by taking a callable that accepts a dataframe, and returns a dataframe with unwanted rows filtered out.
For example to filter out all rows that have a negative value in the
a
column:filtered = cont_names >> ops.Filter(f=lambda df: df["a"] >=0) processor = nvtabular.Workflow(filtered)
- Parameters:
f (callable) – Defines a function that takes a dataframe as an argument, and returns a new dataframe with unwanted rows filtered out.
Methods
__init__
(f)column_mapping
(col_selector)Compute which output columns depend on which input columns
compute_column_schema
(col_name, input_schema)compute_input_schema
(root_schema, ...)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema
(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector
(input_schema, selector[, ...])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node
(selector)export
(path, input_schema, output_schema, ...)Export the class object as a config and all related files to the user defined path.
inference_initialize
(col_selector, model_config)Configures this operator for use in inference.
load_artifacts
([artifact_path])Load artifacts from disk required for operator function.
output_column_names
(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
save_artifacts
([artifact_path])Save artifacts required to be reload operator state from disk
transform
(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
validate_schemas
(parents_schema, ...[, ...])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependencies
Defines an optional list of column dependencies for this operator.
dynamic_dtypes
export_name
Provides a clear common english identifier for this operator.
is_subgraph
label
output_dtype
output_properties
output_tags
supported_formats
supports
Returns what kind of data representation this operator supports
- transform(col_selector: ColumnSelector, df: DataFrame) DataFrame [source]#
Transform the dataframe by applying this operator to the set of input columns