nvtabular.ops.ListSlice#
- class nvtabular.ops.ListSlice(start, end=None, pad=False, pad_value=0.0)[source]#
- Bases: - Operator- Slices a list column - This operator provides the ability to slice list column by row. For example, to truncate a list column to only include the first 10 elements per row: - truncated = column_names >> ops.ListSlice(10) - Take the first 10 items, ignoring the first element: - truncated = column_names >> ops.ListSlice(1, 11) - Take the last 10 items from each row: - truncated = column_names >> ops.ListSlice(-10) - Parameters:
- start (int) – The starting value to slice from if end isn’t given, otherwise the end value to slice to 
- end (int, optional) – The end value to slice to 
- pad (bool, default False) – Whether to pad out rows to have the same number of elements. If not set rows may not all have the same number of entries. 
- pad_value (float) – When pad=True, this is the value used to pad missing entries 
 
 - Methods - __init__(start[, end, pad, pad_value])- column_mapping(col_selector)- Compute which output columns depend on which input columns - compute_column_schema(col_name, input_schema)- compute_input_schema(root_schema, ...)- Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use - compute_output_schema(input_schema, col_selector)- Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce - compute_selector(input_schema, selector[, ...])- Provides a hook method for sub-classes to override to implement custom column selection logic. - create_node(selector)- export(path, input_schema, output_schema, ...)- Export the class object as a config and all related files to the user defined path. - inference_initialize(col_selector, model_config)- Configures this operator for use in inference. - load_artifacts([artifact_path])- Load artifacts from disk required for operator function. - output_column_names(col_selector)- Given a set of columns names returns the names of the transformed columns this operator will produce - save_artifacts([artifact_path])- Save artifacts required to be reload operator state from disk - transform(col_selector, df)- Transform the dataframe by applying this operator to the set of input columns - validate_schemas(parents_schema, ...[, ...])- Provides a hook method that sub-classes can override to implement schema validation logic. - Attributes - dependencies- Defines an optional list of column dependencies for this operator. - dynamic_dtypes- export_name- Provides a clear common english identifier for this operator. - is_subgraph- label- output_dtype- output_properties- supported_formats- supports- Returns what kind of data representation this operator supports - transform(col_selector: ColumnSelector, df: DataFrame) DataFrame[source]#
- Transform the dataframe by applying this operator to the set of input columns 
 - property output_tags#