merlin.models.tf.CategoryEncoding#
- class merlin.models.tf.CategoryEncoding(*args, **kwargs)[source]#
Bases:
merlin.models.tf.core.tabular.TabularBlock
A preprocessing layer which encodes integer features.
This layer provides options for condensing data into a categorical encoding. It accepts integer values as inputs, and it outputs a dense or sparse representation of those inputs. Only categorical features with “CATEGORICAL” as Tag can be transformed, and other features without this Tag would be discarded. It outputs a TabularData (Dict of features), where each feature is a 2D tensor computed based on the outputmode.
- schemaOptional[Schema]
The Schema with the input features
- output_mode: Optional[str]
Specification for the output of the layer. Defaults to “multi_hot”. Values can be “one_hot”, “multi_hot” or “count”, configuring the transformation layer as follows: - “one_hot”: Encodes each individual element in the input into a tensor with shape
(batch_size, feature_cardinality), containing a 1 at the element index. It accepts both 1D tensor or 2D tensor if squeezable (i.e., if the last dimension is 1).
- “multi_hot”: Encodes each categorical value from the 2D input features into a
multi-hot representation with shape (batch_size, feature_cardinality), with 1 at the indices present in the sequence and 0 for the other position. If 1D feature is provided, it behaves the same as “one_hot”.
- “count”: also expects 2D tensor like “multi_hot” and outputs the features
with shape (batch_size, feature_cardinality). But instead of returning “multi-hot” values, it outputs the frequency (count) of the number of items each item occurs in each sample.
- sparse: Optional[Boolean]
If true, returns a SparseTensor instead of a dense Tensor. Defaults to False. Setting sparse=True is recommended for high-cardinality features, in order to avoid out-of-memory errors.
- count_weights: Optional[Union(tf.Tensor, tf.RaggedTensor, tf.SparseTensor)]
count_weights is used to calculate weighted sum of times a token at that index appeared when output_mode is “count”
- __init__(schema: Optional[merlin.schema.schema.Schema] = None, output_mode='one_hot', sparse=False, count_weights=None, **kwargs)[source]#
Methods
__init__
([schema, output_mode, sparse, ...])add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, ...])Adds a new variable to the layer.
apply_to_all
(inputs[, columns_to_filter])as_tabular
([name])build
(input_shapes)build_from_config
(config)calculate_batch_size_from_input_shapes
(...)call
(inputs, **kwargs)call_outputs
(outputs[, training])check_schema
([schema])compute_call_output_shape
(input_shapes)compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_output_shape
(input_shapes)compute_output_signature
(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect
(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch
(*branches[, add_rest, post, ...])Connect the block to one or multiple branches.
connect_debug_block
([append])Connect the block to a debug block.
connect_with_residual
(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut
(block[, ...])Connect the block to other blocks sequentially with a shortcut connection.
copy
()count_params
()Count the total number of scalars composing the weights.
finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config)from_features
(features[, pre, post, ...])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer
(layer)from_schema
(schema[, tags, allow_none])Instantiate a TabularLayer instance from a DatasetSchema.
get_build_config
()get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs
(inputs)get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id
(inputs[, ...])get_weights
()Returns the current weights of the layer, as NumPy arrays.
parse
(*block)parse_block
(input)post_call
(inputs[, transformations, ...])Method that's typically called after the forward method for post-processing.
pre_call
(inputs[, transformations])Method that's typically called before the forward method for pre-processing.
prepare
([block, post, aggregation])Transform the inputs of this block.
register_features
(feature_shapes)repeat
([num])Repeat the block num times.
repeat_in_parallel
([num, prefix, names, ...])Repeat the block num times in parallel.
repr_add
()repr_extra
()repr_ignore
()select_by_name
(name)select_by_tag
(tags)set_aggregation
(value)- param value
set_post
(value)set_pre
(value)set_schema
([schema])set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
super
()with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizer
Optional regularizer function for the output of this layer.
aggregation
rtype: TabularAggregation, optional
compute_dtype
The dtype of the layer's computations.
context
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
has_schema
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
is_input
is_tabular
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
post
rtype: SequentialTabularTransformations, optional
pre
rtype: SequentialTabularTransformations, optional
registry
schema
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable
trainable_variables
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.
- call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], **kwargs) Dict[str, tensorflow.python.framework.ops.Tensor] [source]#
- REQUIRES_SCHEMA = True#