merlin.models.tf.ContrastiveOutput#
- class merlin.models.tf.ContrastiveOutput(*args, **kwargs)[source]#
Bases:
merlin.models.tf.outputs.base.ModelOutput
Categorical output
- Parameters
to_call (Union[Schema, ColumnSchema,) –
- EmbeddingTable, ‘CategoricalTarget’,
’EmbeddingTablePrediction’, ‘DotProduct’]
The target feature to predict. To perform weight-tying [1] technique, you should provide the EmbeddingTable or EmbeddingTablePrediction related to the target feature.
negative_samplers (ItemSamplersType) – List of samplers for negative sampling, by default None
pre (Optional[Block], optional) – Optional block to transform predictions before computing the binary logits, by default None
post (Optional[Block], optional) – Optional block to transform the binary logits, by default None
logits_temperature (float, optional) – Parameter used to reduce model overconfidence, so that logits / T. by default 1
name (str, optional) – The name of the task, by default None
default_loss (Union[str, tf.keras.losses.Loss], optional) – Default loss to use for categorical-classification by default ‘categorical_crossentropy’
get_default_metrics (Callable, optional) – A function returning the list of default metrics to use for categorical-classification
store_negative_ids (bool, optional) – Whether to store negative ids for post-processing by default False
logq_sampling_correction (bool, optional) – The LogQ correction is a standard technique for sampled softmax and popularity-biased sampling. It subtracts from the logits the log expected count/prob of the positive and negative samples in order to not overpenalize the popular items for being sampled more often as negatives. It can be enabled if a single negative sampler is provided and if it provides the sampler provides the sampling probabilities (i.e. implements with_sampling_probs()). Another alternative for performing logQ correction is using ContrastiveOutput(…, post=PopularityLogitsCorrection(item_frequencies)), where you need to provide the items frequency probability distribution (prior). Default is False.
References –
---------- –
Inan ([1] Hakan) –
Khosravi (Khashayar) –
vectors (and Richard Socher. 2016. Tying word) –
classifiers (and word) –
arXiv (1611.01462 (2016).) –
Notes –
---------- –
DotProduct() (In case to_call is set as) –
inferred (schema of target couldn't be) –
therefore –
arg (the user should feed a schema only with ITEM_ID feature as schema) –
:param : :param which is treated as a kwargs arg below.: :param Example usage::
outputs=mm.ContrastiveOutput( to_call=DotProduct(), negative_samplers="in-batch", schema=schema.select_by_tag(Tags.ITEM_ID), logits_temperature = 0.2, )
- Parameters
arg. (The schema arg is not needed when we pass the schema to to_call) –
usage:: (Example) –
- outputs=mm.ContrastiveOutput(
to_call=schema.select_by_tag(Tags.ITEM_ID), negative_samplers=”in-batch”, logits_temperature = 0.2,
)
- __init__(to_call: typing.Union[merlin.schema.schema.Schema, merlin.schema.schema.ColumnSchema, merlin.models.tf.inputs.embedding.EmbeddingTable, merlin.models.tf.outputs.classification.CategoricalTarget, merlin.models.tf.outputs.classification.EmbeddingTablePrediction, merlin.models.tf.outputs.base.DotProduct], negative_samplers: typing.Union[merlin.models.tf.outputs.sampling.base.CandidateSampler, typing.Sequence[typing.Union[merlin.models.tf.outputs.sampling.base.CandidateSampler, str]], str], target_name: typing.Optional[str] = None, pre: typing.Optional[keras.engine.base_layer.Layer] = None, post: typing.Optional[keras.engine.base_layer.Layer] = None, logits_temperature: float = 1.0, name: typing.Optional[str] = None, default_loss: typing.Union[str, keras.losses.Loss] = 'categorical_crossentropy', default_metrics_fn: typing.Callable[[], typing.Sequence[keras.metrics.base_metric.Metric]] = <function default_categorical_prediction_metrics>, downscore_false_negatives=True, false_negative_score: float = -655.04, query_name: str = 'query', candidate_name: str = 'candidate', store_negative_ids: bool = False, logq_sampling_correction: typing.Optional[bool] = False, **kwargs)[source]#
Methods
__init__
(to_call, negative_samplers[, ...])add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, ...])Adds a new variable to the layer.
build
(input_shape)build_from_config
(config)call
(inputs[, features, targets, training, ...])call_contrastive
(inputs, features, targets)compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_output_shape
(input_shape)compute_output_signature
(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params
()Count the total number of scalars composing the weights.
create_default_metrics
()embedding_lookup
(ids)finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config)get_build_config
()get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_task_name
(target_name)Returns the name of the task :param target_name: Name of the target :type target_name: str
get_weights
()Returns the current weights of the layer, as NumPy arrays.
outputs
(query_embedding, positive, negative)Method to compute the dot product between the query embeddings and positive/negative candidates
sample_negatives
(positive, features[, ...])Method to sample negatives from self.negative_samplers
set_negative_samplers
(negative_samplers)set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
to_dataset
([gpu])with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizer
Optional regularizer function for the output of this layer.
compute_dtype
The dtype of the layer's computations.
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
task_name
trainable
trainable_variables
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.
- outputs(query_embedding: tensorflow.python.framework.ops.Tensor, positive: merlin.models.tf.outputs.sampling.base.Candidate, negative: merlin.models.tf.outputs.sampling.base.Candidate) merlin.models.tf.core.prediction.Prediction [source]#
Method to compute the dot product between the query embeddings and positive/negative candidates
- Parameters
query_embedding (tf.Tensor) – tensor of query embeddings.
positive (Candidate) – Store the ids and metadata (such as embeddings) of the positive candidates.
negative (Candidate) – Store the ids and metadata (such as embeddings) of the sampled negative candidates.
- Returns
a Prediction object with the prediction scores, the targets and the negative candidates ids if specified.
- Return type
Prediction
- sample_negatives(positive: merlin.models.tf.outputs.sampling.base.Candidate, features: Dict[str, tensorflow.python.framework.ops.Tensor], training=False, testing=False) Tuple[merlin.models.tf.outputs.sampling.base.Candidate, merlin.models.tf.outputs.sampling.base.Candidate] [source]#
Method to sample negatives from self.negative_samplers
- Parameters
- Returns
Tuple of candidates with sampled negative ids and the provided positive ids added with the sampling probability
- Return type
Tuple[Candidate, Candidate]
- to_dataset(gpu=None) merlin.io.dataset.Dataset [source]#