merlin.models.tf.PrepareFeatures#
- class merlin.models.tf.PrepareFeatures(*args, **kwargs)[source]#
- Bases: - merlin.models.tf.core.tabular.TabularBlock- Prepares scalar and list (multi-hot/sequential) features to be used with a Merlin model. The transformations are applied only for features in the schema, the other features are kept the same. The scalar features are extended to be 2D (batch_size, 1) and list features are converted to either tf.RaggedTensor or dense tf.Tensor based on the columns schema. It manages in particular the Merlin dataloader representation of list features, which consists of two keys in the inputs dict suffixed by “__values” and “__offsets”. For example, the “categories” list feature are represented by the Merlin Dataloader as “categories__values” and “categories__offsets” keys and this block converts them to a single ragged or dense tensor “categories”. - Parameters
- schema (Schema) – The features schema 
- list_as_dense (bool, optional) – Whether to enforce all list features to be dense tf.Tensor (including the ragged ones), by default False 
 
 - __init__(schema: merlin.schema.schema.Schema, list_as_dense: Optional[bool] = False, **kwargs)[source]#
 - Methods - __init__(schema[, list_as_dense])- add_loss(losses, **kwargs)- Add loss tensor(s), potentially dependent on layer inputs. - add_metric(value[, name])- Adds metric tensor to the layer. - add_update(updates)- Add update op(s), potentially dependent on layer inputs. - add_variable(*args, **kwargs)- Deprecated, do NOT use! Alias for add_weight. - add_weight([name, shape, dtype, ...])- Adds a new variable to the layer. - apply_to_all(inputs[, columns_to_filter])- as_tabular([name])- build(input_shapes)- build_from_config(config)- calculate_batch_size_from_input_shapes(...)- call(inputs[, targets])- call_outputs(outputs[, training])- check_schema([schema])- compute_call_output_shape(input_shapes)- compute_mask(inputs[, mask])- Computes an output mask tensor. - compute_output_shape(input_shapes)- compute_output_signature(input_signature)- Compute the output tensor signature of the layer based on the inputs. - connect(*block[, block_name, context])- Connect the block to other blocks sequentially. - connect_branch(*branches[, add_rest, post, ...])- Connect the block to one or multiple branches. - connect_debug_block([append])- Connect the block to a debug block. - connect_with_residual(block[, activation])- Connect the block to other blocks sequentially with a residual connection. - connect_with_shortcut(block[, ...])- Connect the block to other blocks sequentially with a shortcut connection. - copy()- count_params()- Count the total number of scalars composing the weights. - finalize_state()- Finalizes the layers state after updating layer weights. - from_config(config)- from_features(features[, pre, post, ...])- Initializes a TabularLayer instance where the contents of features will be filtered out - from_layer(layer)- from_schema(schema[, tags, allow_none])- Instantiate a TabularLayer instance from a DatasetSchema. - get_build_config()- get_input_at(node_index)- Retrieves the input tensor(s) of a layer at a given node. - get_input_mask_at(node_index)- Retrieves the input mask tensor(s) of a layer at a given node. - get_input_shape_at(node_index)- Retrieves the input shape(s) of a layer at a given node. - get_item_ids_from_inputs(inputs)- get_output_at(node_index)- Retrieves the output tensor(s) of a layer at a given node. - get_output_mask_at(node_index)- Retrieves the output mask tensor(s) of a layer at a given node. - get_output_shape_at(node_index)- Retrieves the output shape(s) of a layer at a given node. - get_padding_mask_from_item_id(inputs[, ...])- get_weights()- Returns the current weights of the layer, as NumPy arrays. - parse(*block)- parse_block(input)- post_call(inputs[, transformations, ...])- Method that's typically called after the forward method for post-processing. - pre_call(inputs[, transformations])- Method that's typically called before the forward method for pre-processing. - prepare([block, post, aggregation])- Transform the inputs of this block. - register_features(feature_shapes)- repeat([num])- Repeat the block num times. - repeat_in_parallel([num, prefix, names, ...])- Repeat the block num times in parallel. - repr_add()- repr_extra()- repr_ignore()- select_by_name(name)- select_by_tag(tags)- set_aggregation(value)- param value
 - set_post(value)- set_pre(value)- set_schema([schema])- set_weights(weights)- Sets the weights of the layer, from NumPy arrays. - super()- with_name_scope(method)- Decorator to automatically enter the module name scope. - Attributes - REQUIRES_SCHEMA- activity_regularizer- Optional regularizer function for the output of this layer. - aggregation- rtype: TabularAggregation, optional - compute_dtype- The dtype of the layer's computations. - context- dtype- The dtype of the layer weights. - dtype_policy- The dtype policy associated with this layer. - dynamic- Whether the layer is dynamic (eager-only); set in the constructor. - has_schema- inbound_nodes- Return Functional API nodes upstream of this layer. - input- Retrieves the input tensor(s) of a layer. - input_mask- Retrieves the input mask tensor(s) of a layer. - input_shape- Retrieves the input shape(s) of a layer. - input_spec- InputSpec instance(s) describing the input format for this layer. - is_input- is_tabular- losses- List of losses added using the add_loss() API. - metrics- List of metrics added using the add_metric() API. - name- Name of the layer (string), set in the constructor. - name_scope- Returns a tf.name_scope instance for this class. - non_trainable_variables- non_trainable_weights- List of all non-trainable weights tracked by this layer. - outbound_nodes- Return Functional API nodes downstream of this layer. - output- Retrieves the output tensor(s) of a layer. - output_mask- Retrieves the output mask tensor(s) of a layer. - output_shape- Retrieves the output shape(s) of a layer. - post- rtype: SequentialTabularTransformations, optional - pre- rtype: SequentialTabularTransformations, optional - registry- schema- stateful- submodules- Sequence of all sub-modules. - supports_masking- Whether this layer supports computing a mask using compute_mask. - trainable- trainable_variables- trainable_weights- List of all trainable weights tracked by this layer. - updates- variable_dtype- Alias of Layer.dtype, the dtype of the weights. - variables- Returns the list of all layer variables/weights. - weights- Returns the list of all layer variables/weights. - call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], targets: Optional[Dict[str, tensorflow.python.framework.ops.Tensor]] = None, **kwargs) Union[Dict[str, tensorflow.python.framework.ops.Tensor], Tuple[Dict[str, tensorflow.python.framework.ops.Tensor], Dict[str, tensorflow.python.framework.ops.Tensor]]][source]#