merlin.models.tf.SequencePredictRandom#
- class merlin.models.tf.SequencePredictRandom(*args, **kwargs)[source]#
- Bases: - merlin.models.tf.transforms.sequence.SequenceTransform- Prepares sequential inputs and targets for random-item prediction. A random element in the sequence (except the first one) is selected as target and all elements before the selected target as used as input features. - Parameters
- schema (Schema) – The schema with the sequential columns to be truncated 
- target (Union[str, Tags, ColumnSchema]) – The sequential input column that will be used to extract the target 
- pre (Optional[BlockType], optional) – A block that is called before this method call(). P.s. The PrepareFeatures() is called automatically before the pre to convert the list features representation 
 
 - __init__(schema: merlin.schema.schema.Schema, target: Union[str, merlin.schema.tags.Tags, merlin.schema.schema.ColumnSchema], pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, transformer=None, **kwargs)#
 - Methods - __init__(schema, target[, pre, transformer])- add_loss(losses, **kwargs)- Add loss tensor(s), potentially dependent on layer inputs. - add_metric(value[, name])- Adds metric tensor to the layer. - add_update(updates)- Add update op(s), potentially dependent on layer inputs. - add_variable(*args, **kwargs)- Deprecated, do NOT use! Alias for add_weight. - add_weight([name, shape, dtype, ...])- Adds a new variable to the layer. - apply_to_all(inputs[, columns_to_filter])- as_tabular([name])- build(input_shapes)- build_from_config(config)- calculate_batch_size_from_input_shapes(...)- call(inputs[, targets, training, testing])- call_outputs(outputs[, training])- check_schema([schema])- compute_call_output_shape(input_shapes)- compute_mask(inputs[, mask])- compute_output_shape(input_shape)- compute_output_signature(input_signature)- Compute the output tensor signature of the layer based on the inputs. - configure_for_test()- Method called by the model.evaluate() to check any custom model's configuration before calling keras parent class evaluate() - configure_for_train()- Method called by the model.fit() to set additional model's configuration before calling keras parent class fit() - connect(*block[, block_name, context])- Connect the block to other blocks sequentially. - connect_branch(*branches[, add_rest, post, ...])- Connect the block to one or multiple branches. - connect_debug_block([append])- Connect the block to a debug block. - connect_with_residual(block[, activation])- Connect the block to other blocks sequentially with a residual connection. - connect_with_shortcut(block[, ...])- Connect the block to other blocks sequentially with a shortcut connection. - copy()- count_params()- Count the total number of scalars composing the weights. - finalize_state()- Finalizes the layers state after updating layer weights. - from_config(config)- Creates layer from its config. - from_features(features[, pre, post, ...])- Initializes a TabularLayer instance where the contents of features will be filtered out - from_layer(layer)- from_schema(schema[, tags, allow_none])- Instantiate a TabularLayer instance from a DatasetSchema. - get_build_config()- get_config()- Returns the config of the layer as a Python dictionary. - get_input_at(node_index)- Retrieves the input tensor(s) of a layer at a given node. - get_input_mask_at(node_index)- Retrieves the input mask tensor(s) of a layer at a given node. - get_input_shape_at(node_index)- Retrieves the input shape(s) of a layer at a given node. - get_item_ids_from_inputs(inputs)- get_output_at(node_index)- Retrieves the output tensor(s) of a layer at a given node. - get_output_mask_at(node_index)- Retrieves the output mask tensor(s) of a layer at a given node. - get_output_shape_at(node_index)- Retrieves the output shape(s) of a layer at a given node. - get_padding_mask_from_item_id(inputs[, ...])- get_weights()- Returns the current weights of the layer, as NumPy arrays. - parse(*block)- parse_block(input)- post_call(inputs[, transformations, ...])- Method that's typically called after the forward method for post-processing. - pre_call(inputs[, transformations])- Method that's typically called before the forward method for pre-processing. - prepare([block, post, aggregation])- Transform the inputs of this block. - register_features(feature_shapes)- repeat([num])- Repeat the block num times. - repeat_in_parallel([num, prefix, names, ...])- Repeat the block num times in parallel. - repr_add()- repr_extra()- repr_ignore()- select_by_name(name)- select_by_tag(tags)- set_aggregation(value)- param value
 - set_post(value)- set_pre(value)- set_schema([schema])- set_weights(weights)- Sets the weights of the layer, from NumPy arrays. - super()- with_name_scope(method)- Decorator to automatically enter the module name scope. - Attributes - REQUIRES_SCHEMA- activity_regularizer- Optional regularizer function for the output of this layer. - aggregation- rtype: TabularAggregation, optional - compute_dtype- The dtype of the layer's computations. - context- dtype- The dtype of the layer weights. - dtype_policy- The dtype policy associated with this layer. - dynamic- Whether the layer is dynamic (eager-only); set in the constructor. - has_schema- inbound_nodes- Return Functional API nodes upstream of this layer. - input- Retrieves the input tensor(s) of a layer. - input_mask- Retrieves the input mask tensor(s) of a layer. - input_shape- Retrieves the input shape(s) of a layer. - input_spec- InputSpec instance(s) describing the input format for this layer. - is_input- is_tabular- losses- List of losses added using the add_loss() API. - metrics- List of metrics added using the add_metric() API. - name- Name of the layer (string), set in the constructor. - name_scope- Returns a tf.name_scope instance for this class. - non_trainable_variables- non_trainable_weights- List of all non-trainable weights tracked by this layer. - outbound_nodes- Return Functional API nodes downstream of this layer. - output- Retrieves the output tensor(s) of a layer. - output_mask- Retrieves the output mask tensor(s) of a layer. - output_shape- Retrieves the output shape(s) of a layer. - post- rtype: SequentialTabularTransformations, optional - pre- rtype: SequentialTabularTransformations, optional - registry- schema- stateful- submodules- Sequence of all sub-modules. - supports_masking- Whether this layer supports computing a mask using compute_mask. - trainable- trainable_variables- trainable_weights- List of all trainable weights tracked by this layer. - updates- variable_dtype- Alias of Layer.dtype, the dtype of the weights. - variables- Returns the list of all layer variables/weights. - weights- Returns the list of all layer variables/weights.