merlin.models.tf.MultiClassClassificationTask#
- class merlin.models.tf.MultiClassClassificationTask(*args, **kwargs)[source]#
- Bases: - merlin.models.tf.prediction_tasks.base.PredictionTask- Prediction task for multi-class classification. - Parameters
 - __init__(target_name: Optional[str] = None, task_name: Optional[str] = None, task_block: Optional[keras.engine.base_layer.Layer] = None, pre: Optional[merlin.models.tf.core.base.Block] = None, **kwargs)[source]#
 - Methods - __init__([target_name, task_name, ...])- add_loss(losses, **kwargs)- Add loss tensor(s), potentially dependent on layer inputs. - add_metric(value[, name])- Adds metric tensor to the layer. - add_update(updates)- Add update op(s), potentially dependent on layer inputs. - add_variable(*args, **kwargs)- Deprecated, do NOT use! Alias for add_weight. - add_weight([name, shape, dtype, ...])- Adds a new variable to the layer. - build(input_shape[, features_shape])- build_from_config(config)- build_task(input_shape, schema, body, **kwargs)- call(inputs[, training])- child_name(name)- compute_mask(inputs[, mask])- Computes an output mask tensor. - compute_output_shape(input_shape)- compute_output_signature(input_signature)- Compute the output tensor signature of the layer based on the inputs. - count_params()- Count the total number of scalars composing the weights. - create_default_metrics()- finalize_state()- Finalizes the layers state after updating layer weights. - from_config(config)- from_schema(schema[, feature_name, ...])- Create from Schema. - get_build_config()- get_config()- get_input_at(node_index)- Retrieves the input tensor(s) of a layer at a given node. - get_input_mask_at(node_index)- Retrieves the input mask tensor(s) of a layer at a given node. - get_input_shape_at(node_index)- Retrieves the input shape(s) of a layer at a given node. - get_output_at(node_index)- Retrieves the output tensor(s) of a layer at a given node. - get_output_mask_at(node_index)- Retrieves the output mask tensor(s) of a layer at a given node. - get_output_shape_at(node_index)- Retrieves the output shape(s) of a layer at a given node. - get_weights()- Returns the current weights of the layer, as NumPy arrays. - pre_call(inputs, **kwargs)- Apply PredictionTask to inputs to get predictions scores - pre_loss(outputs, **kwargs)- Apply call_outputs method of pre block to transform predictions and targets before computing loss and metrics. - set_weights(weights)- Sets the weights of the layer, from NumPy arrays. - with_name_scope(method)- Decorator to automatically enter the module name scope. - Attributes - activity_regularizer- Optional regularizer function for the output of this layer. - compute_dtype- The dtype of the layer's computations. - context- dtype- The dtype of the layer weights. - dtype_policy- The dtype policy associated with this layer. - dynamic- Whether the layer is dynamic (eager-only); set in the constructor. - inbound_nodes- Return Functional API nodes upstream of this layer. - input- Retrieves the input tensor(s) of a layer. - input_mask- Retrieves the input mask tensor(s) of a layer. - input_shape- Retrieves the input shape(s) of a layer. - input_spec- InputSpec instance(s) describing the input format for this layer. - losses- List of losses added using the add_loss() API. - metrics- List of metrics added using the add_metric() API. - name- Name of the layer (string), set in the constructor. - name_scope- Returns a tf.name_scope instance for this class. - non_trainable_variables- non_trainable_weights- List of all non-trainable weights tracked by this layer. - outbound_nodes- Return Functional API nodes downstream of this layer. - output- Retrieves the output tensor(s) of a layer. - output_mask- Retrieves the output mask tensor(s) of a layer. - output_shape- Retrieves the output shape(s) of a layer. - pre_eval_topk- stateful- submodules- Sequence of all sub-modules. - supports_masking- Whether this layer supports computing a mask using compute_mask. - task_name- trainable- trainable_variables- trainable_weights- List of all trainable weights tracked by this layer. - updates- variable_dtype- Alias of Layer.dtype, the dtype of the weights. - variables- Returns the list of all layer variables/weights. - weights- Returns the list of all layer variables/weights. - DEFAULT_LOSS = 'categorical_crossentropy'#
 - DEFAULT_METRICS: Union[Sequence[Union[keras.metrics.base_metric.Metric, Type[keras.metrics.base_metric.Metric]]], keras.metrics.base_metric.Metric, Type[keras.metrics.base_metric.Metric]] = (functools.partial(<class 'keras.metrics.accuracy_metrics.Accuracy'>, name='accuracy'),)#
 - classmethod from_schema(schema: merlin.schema.schema.Schema, feature_name: str = Tags.ITEM_ID, bias_initializer='zeros', kernel_initializer='random_normal', extra_pre: Optional[merlin.models.tf.core.base.Block] = None, **kwargs) merlin.models.tf.prediction_tasks.classification.MultiClassClassificationTask[source]#
- Create from Schema.