merlin.models.tf.losses.BPRmaxLoss#
- class merlin.models.tf.losses.BPRmaxLoss(reg_lambda: float = 1.0, **kwargs)[source]#
Bases:
merlin.models.tf.losses.pairwise.PairwiseLoss
The BPR-max pairwise loss proposed in 1
References
- 1
Hidasi, Balázs, and Alexandros Karatzoglou. “Recurrent neural networks with top-k gains for session-based recommendations.” Proceedings of the 27th ACM international conference on information and knowledge management. 2018. https://arxiv.org/abs/1706.03847
- __init__(reg_lambda: float = 1.0, **kwargs)[source]#
[summary]
- Parameters
reg_lambda (float, optional) – Regularization factor of the softmax(neg_scores) term, by default 1.0
Methods
__init__
([reg_lambda])[summary]
call
(y_true, y_pred)Loss computation.
compute
(positives_scores, negatives_scores)Computes the loss
from_config
(config)Instantiates a Loss from its config (output of get_config()).
get_config
()Returns the config dictionary for a Loss instance.
parse
(class_or_str)Attributes
registry
valid_negatives_mask
- compute(positives_scores: tensorflow.python.framework.ops.Tensor, negatives_scores: tensorflow.python.framework.ops.Tensor) tensorflow.python.framework.ops.Tensor [source]#
Computes the loss
- Parameters
positives_scores (tf.Tensor) – Prediction scores for the positive items (batch size x 1)
negatives_scores (tf.Tensor) – Prediction scores for the positive items (batch size x number negative samples)
- Returns
Loss per negative sample
- Return type
tf.Tensor (batch size x number negative samples)