merlin.models.tf.EmbeddingEncoder#

class merlin.models.tf.EmbeddingEncoder(*args, **kwargs)[source]#

Bases: merlin.models.tf.core.encoder.Encoder

Creates an Encoder from an EmbeddingTable. Typically used with RetrievalModelV2.

Parameters
  • schema (Union[ColumnSchema, Schema]) – The ColumnSchema of the column for which the embedding table needs to be created. If a Schema is passed, only the first column is considered

  • dim (int) – Dimension of the embeddings

  • embeddings_initializer (Union[str, tf.keras.layers.Layer], optional) – Initializer for the embeddings matrix (see keras.initializers). By default “uniform”

  • embeddings_regularizer (Union[str, tf.keras.layers.Layer], optional) – Regularizer function applied to the embeddings matrix (see keras.regularizers)., by default None

  • activity_regularizer (Union[str, tf.keras.layers.Layer], optional) – Sets a layer that applies an update to the cost function based input activity, by default None

  • embeddings_constraint (Union[str, tf.keras.layers.Layer], optional) – Constraint function applied to the embeddings matrix (see keras.constraints), by default None

  • mask_zero (bool, optional) – Whether or not the input value 0 is a special “padding” value that should be masked out. This is useful when using recurrent layers which may take variable length input. If this is True, then all subsequent layers in the model need to support masking or an exception will be raised. If mask_zero is set to True, as a consequence, index 0 cannot be used in the vocabulary (input_dim should equal size of vocabulary + 1), by default False

  • input_length (int, optional) – This argument is required if you are going to connect Flatten then Dense layers upstream (without it, the shape of the dense outputs cannot be computed), by default None

  • sequence_combiner (Optional[CombinerType], optional) – A string specifying how to combine embedding results for each entry (“mean”, “sqrtn” and “sum” are supported) or a layer. Default is None (no combiner used), by default None

  • trainable (bool, optional) – Whether the layer’s variables should be trainable, by default True

  • name (str, optional) – String name of the layer, by default None

  • dtype (optional) – The dtype of the layer’s computations and weights. Can also be a tf.keras.mixed_precision.Policy, which allows the computation and weight dtype to differ. Default of None means to use tf.keras.mixed_precision.global_policy(), which is a float32 policy unless set to different value., by default None

  • dynamic (bool, optional) – Set this to True if your layer should only be run eagerly, and should not be used to generate a static computation graph. This would be the case for a Tree-RNN or a recursive network, for example, or generally for any layer that manipulates tensors using Python control flow. If False, we assume that the layer can safely be used to generate a static computation graph., by default False

  • embeddings_l2_batch_regularization (Optional[Union[float, Dict[str, float]]], optional) – Factor for L2 regularization of the embeddings vectors (from the current batch only) by default 0.0, by default 0.0

  • post (Optional[tf.keras.layers.Layer], optional) – _description_, by default None

  • **kwargs (Forwarded Encoder parameters) –

__init__(schema: Union[merlin.schema.schema.ColumnSchema, merlin.schema.schema.Schema], dim: int, embeddings_initializer: Optional[Union[str, keras.engine.base_layer.Layer]] = 'uniform', embeddings_regularizer: Optional[Union[str, keras.engine.base_layer.Layer]] = None, activity_regularizer: Optional[Union[str, keras.engine.base_layer.Layer]] = None, embeddings_constraint: Optional[Union[str, keras.engine.base_layer.Layer]] = None, mask_zero: bool = False, input_length: Optional[int] = None, sequence_combiner: Optional[Union[str, keras.engine.base_layer.Layer]] = None, trainable: bool = True, name: Optional[str] = None, dtype=None, dynamic: bool = False, embeddings_l2_batch_regularization: Optional[Union[float, Dict[str, float]]] = 0.0, post: Optional[keras.engine.base_layer.Layer] = None, **kwargs)[source]#

Methods

__init__(schema, dim[, ...])

add_loss(losses, **kwargs)

Add loss tensor(s), potentially dependent on layer inputs.

add_metric(value[, name])

Adds metric tensor to the layer.

add_update(updates)

Add update op(s), potentially dependent on layer inputs.

add_variable(*args, **kwargs)

Deprecated, do NOT use! Alias for add_weight.

add_weight([name, shape, dtype, ...])

Adds a new variable to the layer.

batch_predict(dataset, batch_size[, ...])

Batched prediction using Dask.

build(input_shape)

Creates the variables of the layer.

build_from_config(config)

call(inputs, *[, targets, training, testing])

Calls the model on new inputs and returns the outputs as tensors.

compile([optimizer, loss, metrics, ...])

Configures the model for training.

compile_from_config(config)

compute_loss([x, y, y_pred, sample_weight])

Compute the total loss, validate it, and return it.

compute_mask(inputs[, mask])

Computes an output mask tensor.

compute_metrics(x, y, y_pred, sample_weight)

Update metric states and collect all metrics to be returned.

compute_output_shape(input_shape)

Computes the output shape of the layer.

compute_output_signature(input_signature)

Compute the output tensor signature of the layer based on the inputs.

count_params()

Count the total number of scalars composing the weights.

encode(dataset, index, batch_size, **kwargs)

Encodes the given dataset and index.

evaluate([x, y, batch_size, verbose, ...])

Returns the loss value & metrics values for the model in test mode.

evaluate_generator(generator[, steps, ...])

Evaluates the model on a data generator.

export(filepath)

Create a SavedModel artifact for inference (e.g.

finalize_state()

Finalizes the layers state after updating layer weights.

fit(*args, **kwargs)

Fits the model.

fit_generator(generator[, steps_per_epoch, ...])

Fits the model on data yielded batch-by-batch by a Python generator.

from_config(config[, custom_objects])

Creates a new instance of the class by deserializing.

get_build_config()

get_compile_config()

get_config()

Returns the configuration of the model as a dictionary.

get_input_at(node_index)

Retrieves the input tensor(s) of a layer at a given node.

get_input_mask_at(node_index)

Retrieves the input mask tensor(s) of a layer at a given node.

get_input_shape_at(node_index)

Retrieves the input shape(s) of a layer at a given node.

get_layer([name, index])

Retrieves a layer based on either its name (unique) or index.

get_metrics_result()

Returns the model's metrics values as a dict.

get_output_at(node_index)

Retrieves the output tensor(s) of a layer at a given node.

get_output_mask_at(node_index)

Retrieves the output mask tensor(s) of a layer at a given node.

get_output_shape_at(node_index)

Retrieves the output shape(s) of a layer at a given node.

get_weight_paths()

Retrieve all the variables and their paths for the model.

get_weights()

Retrieves the weights of the model.

load_weights(filepath[, skip_mismatch, ...])

Loads all layer weights from a saved files.

make_predict_function([force])

Creates a function that executes one step of inference.

make_test_function([force])

Creates a function that executes one step of evaluation.

make_train_function([force])

Creates a function that executes one step of training.

predict(x[, batch_size, verbose, steps, ...])

Generates output predictions for the input samples.

predict_generator(generator[, steps, ...])

Generates predictions for the input samples from a data generator.

predict_on_batch(x)

Returns predictions for a single batch of samples.

predict_step(data)

The logic for one inference step.

reset_metrics()

Resets the state of all the metrics in the model.

reset_states()

save(export_path[, include_optimizer, ...])

Saves the model to export_path as a Tensorflow Saved Model.

save_spec([dynamic_batch])

Returns the tf.TensorSpec of call args as a tuple (args, kwargs).

save_weights(filepath[, overwrite, ...])

Saves all layer weights.

set_weights(weights)

Sets the weights of the layer, from NumPy arrays.

summary([line_length, positions, print_fn, ...])

Prints a string summary of the network.

test_on_batch(x[, y, sample_weight, ...])

Test the model on a single batch of samples.

test_step(data)

The logic for one evaluation step.

to_dataset([gpu])

to_json(**kwargs)

Returns a JSON string containing the network configuration.

to_yaml(**kwargs)

Returns a yaml string containing the network configuration.

train_on_batch(x[, y, sample_weight, ...])

Runs a single gradient update on a single batch of data.

train_step(data)

Performs a training step.

with_name_scope(method)

Decorator to automatically enter the module name scope.

Attributes

activity_regularizer

Optional regularizer function for the output of this layer.

compute_dtype

The dtype of the layer's computations.

distribute_reduction_method

The method employed to reduce per-replica values during training.

distribute_strategy

The tf.distribute.Strategy this model was created under.

dtype

The dtype of the layer weights.

dtype_policy

The dtype policy associated with this layer.

dynamic

Whether the layer is dynamic (eager-only); set in the constructor.

first

Returns the first block of the model.

has_schema

Returns True as this class does contain a schema.

inbound_nodes

Return Functional API nodes upstream of this layer.

input

Retrieves the input tensor(s) of a layer.

input_mask

Retrieves the input mask tensor(s) of a layer.

input_shape

Retrieves the input shape(s) of a layer.

input_spec

InputSpec instance(s) describing the input format for this layer.

jit_compile

Specify whether to compile the model with XLA.

last

Returns the last block of the model.

layers

losses

List of losses added using the add_loss() API.

metrics

Return metrics added using compile() or add_metric().

metrics_names

Returns the model's display labels for all outputs.

name

Name of the layer (string), set in the constructor.

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

non_trainable_weights

outbound_nodes

Return Functional API nodes downstream of this layer.

output

Retrieves the output tensor(s) of a layer.

output_mask

Retrieves the output mask tensor(s) of a layer.

output_shape

Retrieves the output shape(s) of a layer.

run_eagerly

Settable attribute indicating whether the model should run eagerly.

schema

Returns the schema of the model.

state_updates

Deprecated, do NOT use!

stateful

submodules

Sequence of all sub-modules.

supports_masking

Whether this layer supports computing a mask using compute_mask.

to_call

Provides the list of blocks to be called during the execution of the model.

trainable

trainable_variables

trainable_weights

updates

variable_dtype

Alias of Layer.dtype, the dtype of the weights.

variables

Returns the list of all layer variables/weights.

weights

Returns the list of all layer variables/weights.

to_dataset(gpu=None) merlin.io.dataset.Dataset[source]#